
Programming Form: Algorithmic Explorations of Space

by

Joshua Zabel

B. ENVD. (University of Colorado, Boulder) 2001
M. ARCH (University of California, Berkeley) 2005

A thesis submitted in partial satisfaction of the requirements for the degree of

Master of Architecture

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Roddy Creedon, Chair
Professor Lisa Iwamoto
Professor Anthony Burke
Professor Carlo Sequin

Spring 2005

Contents

Acknowledgements

1. Introduction
i. Digital Morphogenesis
ii. Programming Form
iii. Algorithms
iv. Intelligent Agents
v. Human-Machine

2. Cases
i. Geometry - Serpentine Pavilion
ii. Versioning - Embryologic House
iii. Form as Information - Dynaform
iv. Form as Diagram - Yokohama Port Terminal
v. Algorithm - Hybrid Tower and other projects

3. Project
i. Site
ii. Scripts
iii. Data Model
iv. Mapping Form to Data
v. Structure
vi. Skin
vii. Building

4. Conclusion

Notes

Bibliography

Appendix A: MEL scripts
i. General tools
ii. Automation
iii. Relationships
iv. Behavioral

i

1
2
2
3
4

7
8
9
10
11

12
16
43
49
54
62
65

78

81

83

85
110
116
120

Thankyou()
{
 my Family

 Alexis
 Anthony
 Carlo
 Erik
 Jess
 Leo
 Lisa
 Padma
 Roddy
 Stanley
}

1

i. “Digital Morphogenesis”

 “In contemporary architectural design, digital media is increasingly being used not just as a representational

tool for visualization but as a generative tool for the derivation of form and its transformation - the digital morpho-

genesis.” 1. Further, the paradigm which “digital morphogenesis” represents is redefi ning the way that architects

and designers visualize and think about problems. The tools and techniques that have defi ned architecture in the

past have transformed into a new language, a new morphology - that of the electronic, the informational, the digi-

tal. It has become critical for architects and designers to understand the nature of this environment and engage a

new set of tools and new way of thinking in order to successfully design and build within it.

I. Introduction

2

ii. Programming Form

 The software being used by designers is a consequence of programming and the programs themselves are

embedded with languages as tools which enable their own modifi cation. With programming as a medium for the

coding of ideas, this design project explores the spatial applications of this scripting environment and it’s implica-

tions as a technique for designing a building. Central to this research are the questions of how we encode intelli-

gent decisions and how, as designers, we mediate between the role the computer plays and the role we play in the

design process.

iii. Algorithms

 Algorithms are a method of solving a problem using a step-by-step set of instructions. They have a long

historical legacy as part of an architectural design methodology but computers are providing a much more powerful

platform for their role. Architecture has always involved systems of rational decision making, and synthetic con-

straints to frame thoughts. The Golden Mean is a proportional set of rules (essentially an algorithm) which guided

the composition of the Acropolis.2 Le Corbusier developed his own sets of rules and codes which describe their

approach to architectural design.3 As digital means of exploring design infi ltrate architecture, the language in which

these systems of rationalizing design decisions are being expressed is the algorithm. The result is a synergy be-

tween the human-based desire and computer-based computational power which is enabled by this language.

3

iv. Intelligent Agents

 Given the presence of a new set of tools and a new set of techniques the focus shifts to what architects are

trying to do with them, explicitly or not. Berkel and Bos state: “... techniques form the bridge between abstract

thought and concrete production. This is a two-way bridge: techniques also form thought.” 4 In other words, tech-

nique is the language of how we express our ideas. If coding is a central technique of the use of existing design

software, then, in the act of changing that design environment towards architectural ends, we are inscribing an

architectural intelligence onto that very environment.

 As computers become increasingly powerful, we have shifted the emphasis of their use from automation

(the loom) towards intelligent behavior (AI, Bayesian networks, expert systems, etc). The nature of that intelli-

gence is subject of much debate: Do computers only act intelligently, or are they capable of being autonomously

intelligent in their own right? 5 If computers are capable of either, it will inevitably have an enormous impact on

the way things are made, buildings in particular. Those impacts are the subject of this design project, and hope-

fully, address what is at stake for architectural design. And while we are at it, ask the question, in what ways must

the emerging architect mediate between their own intelligence and the intelligence they encode in the process of

designing? How does this change the responsibility architects have to society?

4

v. Human - Machine

While working on this project there was a constant effort to codify some sort of intelligence, which in effect passes

a level of decision making off to the computer. For example, the createPoolRoof() MEL script 6 is capable

of generating as many viable versions of a structure as one can invent combinations of variables to describe it’s

parameters (that is, millions of versions). At that juncture, when there are countless versions to choose from, a

decision must be made about which ones are most viable and should be developed in the next stage of design. So

the question to the scripting-enabled designer is whether or not the information which measures the performance

of a version of the structural system is encoded in the script. It is at this critical moment that the designer must, in

some way, be able to express desire in code. The measure of performance is expressed in an algorithm. Here, the

reigns are released and the computer has, to some degree, taken control of the design by virtue of the fact that

performance or desire are being expressed in machine language. In the case of this example with the roof struc-

ture system, that value was not encoded. Rather, the decision was left to my intuition about which combination of

parameters best suited the goals of the program.

There is an increasing effort by programmers, artists, and architects to digitally replicate biological models.7

This may come in the form of a genetic algorithm, a swarm, or just a simple set of instructions that mediate the

evolution of a system or make a decision. By designing architecture in terms of digital representations and virtual

models, the rules, codes, and limitations of the method become practiced to the point of internalization. At the

moment of appropriation of the rules, assumption of their existence, and advancement of design based on that

5

assumption, the machine has taken a step towards a biological model (autonomous intelligence?) and the designer

has taken an equal step towards mechanization.

6

2. Case Studies / Precedents

 The following cases are examined as historical precedents for my own research and exploration in the de-

sign of the Aquatic facility. For each I briefl y describe the project, or the part of the design process which is of

particular relevance and infl uence. I also explain why it is of interest and how it will relate to my project.

 These projects defi ne, in part, a context for a type of architecture that has begun to emerge from contem-

porary digital means of design. I have drawn from these cases a set of tools which are the form work for my own

process and I have categorized them as Algorithm (Serpentine Pavilion), Versioning (Embryologic House), Form as

Information (Dynaform), Form as Diagram (Yokohama), and Repetition & Growth (Hybrid Tower). Furthermore,

each project, with the exception of the Hybrid Tower, has a unique and equally digitally-heavy means of fabrication.

In some cases the fabrication information is intrisically tied to the very processes which were used to generate

the form. Although my project is not taken to such a level of construction, the implications for deriving fabrication

information from the model via scripting is an interesting potential.

7

i. Geometry

The Serpentine Pavilion - Toyo Ito and ARUP - 2002The Serpentine Pavilion - Toyo Ito and ARUP - 2002

 A proportionate rule system was used to construct the geometry for the Serpentine Pavilion. Feedback tech-

niques and algorithms were employed to generate a rotating square pattern which becomes the framework for the

roof and folds down to become the walls. The algorithm was developed by Daniel Bosia of Arup. It is designed to

encode a system of rules which are parameterized by ratios, scale, and proportion. Different versions of the pat-

tern were generated by the algorithm and the performance of the result was judged by the priorities of the pro-

gram. Those priorities involved transcending the traditional notion of slab on columns and a play between positive

and negative.1 In the end we have a fanciful pavilion roof that does not seem to have any apparent effect on the

behavior of it’s users, nor can the users effect the pavilion. It is such effects which, I hope, algorithmic techniques

can eventually achieve.

8

ii. Versioning

Embryologic House - Greg Lynn - 2000Embryologic House - Greg Lynn - 2000

 The shift from traditional means of industrial fabrication towards the trend of customization, in large part

prompted Lynn’s design of the Embryologic House: “mass-customizable individual house designs produced by dif-

ferentiation achieved through parametric variation in non-linear dynamic processes.” 2 Beginning with a primitive

form, like an egg, rules were developed to break down the symmetry and set up links and connections between

components. Thus, the interactions between all of the components are maintained while limitless variation can be

achieved by mutating the form. The mutations are reactions to sunlight and environmental data, adjustments of

posture to suit any surface, and opening or closing of architectonic apertures to suit programmatic requirements.3

9

iii. Form as Information

Dynaform - BernDynaform - Bernhard Franken and ABB Architekten - 2001

 The master geometry for the Dynaform is the result of digital experiments in which laws governing the

deformation of a basic structure are enacted based on contextual conditions, force functions simulated from physi-

cal site conditions, and extrapolated from the nature of sound travel and motion. Effects of those forces are per-

ceived in the fi nal form. “The information becomes form through a process of interaction between the designer and

the computer. The force-fi eld simulation is thus not only a method of generating the design, but is also used for

its capacity to produce the spatial coding of information.” 4 Once the fi nal master geometry was established, “de-

rivatives” from that model were taken to generate all forms of necessary information about the building including

rendered images, section drawings, structural models, etc.

10

iv. Form as Diagram

Yokohama International Port Terminal - Foreign Offi ce Architects - 2000Yokohama International Port Terminal - Foreign Offi ce Architects - 2000

In the conceptual phases of the design of the Yokohama Terminal, when a decision was made that the build-

ing would be a warped surface, such a surface was associated with every segment of the fl ow diagram for the

building’s program (known as the “no-return diagram”), and a surface bifurcation to every bifurcation in the fl ow

diagram. So a system of relating the form and diagram was established and provided some basic rules for seek-

ing a preliminary version of the fi nal form of the building. From there, the next question was about structure. The

obvious solution was to support the surface with columns but, that would resort to old ideas about architecture be-

ing deployed on the diagram after the fact. Rather a system of structural system of folding planes was sought out

which supported the idea embedded in the original diagram. As described later, the way in which the idea about

the building’s form meets the diagram is a pivotal moment in the design of the pool facility and is the focus for

much of the effort in the project. There are also parallels in the order of operations from diagram to form to struc-

tural system.5

11

v. Repetition and Growth

Hybrid Tower and other projects - Kostas TerzidisHybrid Tower and other projects - Kostas Terzidis

The Hybrid Tower uses an algorithm to morph a cylinder with a deformed NURBS surface in six steps. The resulting

hybrid components form the tower in nine-story sections. In this example an algorithm is employed as a form-fi nd-

ing function which automates the transition from one shape to another to become the building components. Of

particular note is the use of a MEL script to encode this effect on a Maya model. The script is entitled “Hetero-mor-

phic Algorithm”. Terzidis is also involved in projects which take on recursive processes, boolean algebra, and itera-

tion as not only generative vehicles of ideas but as core principles for the defi nition of architectural form. 6

12

Project

i. Site

 The project is an aquatic recreation facility (swimming pool, gym, & amenities) in Potrero Hill, the form of

which will be sought through a process of digital modeling and scripting. Thus, the project takes on two sites - one

is the environment of Maya. The context for this site is Maya’s Application Programming Interface (API)1 which is

controlled in part by the Maya Embedded Language (MEL)2. The result of the project as it relates to this environ-

ment is a set of scripts and plug-ins which are written as architectural-design-specifi c tools for Maya. Some of the

scripts are more general and have the potential for re-application to different design processes, others are much

more project-specifi c and are written for a particular task. In all, these scripts are as much the intended product of

the project as the building itself.

 The second (physical) site is a vacant lot in Potrero Hill between 17th & Mariposa St. and Kansas & Rhode

Island St. The lot lies 3 blocks east of Highway 101 and 2 blocks west of Jackson Playground. It is bordered to

13

14

15

16

the south and west by 2 and 3 family residential housing and to the north and east by heavy industrial buildings,

some of which have been recently appropriated by small businesses. The lot itself is about 300’ x 200’. There is still

the remains of the foundation of the recycling center which previously occupied the lot. Topographically the site

is about 30’ feet higher on the south west corner than on the north east. The higher corner affords an unblocked

view of downtown San Francisco.

 The physical site, and program (a swimming pool) serve as a test bed for the exploration of programming

and scripting as a viable medium for the design of architectural form. The site and program are chosen for familiar-

ity. The greater concentration of this project is on the process, the software and the coding involved. A swimming

pool in Potrero Hill is simply a test bed for these ideas about coding and process.

ii. Scripts

 Thirty-two individual MEL scripts were written as extensions of Maya’s toolset. These scripts extend Maya’s

capabilities towards architectural goals, automate the construction of relationships between parts, and describe be-

havioral characteristics of the model which govern the formation of the proposed building. They are not only intrin-

sic to the project’s formation but are tied also to it’s representation in the way that they modify and extract infor-

mation from the model in the form of a renderable scene, section cut, or a 3D-print-ready STL fi le. The scripts are

divided into four types: General tools, Automation, Relationships, and Behavioral. The four categories are arranged

in order of complexity of the script and, incidentally, in order of specifi city to this particular project. Each category

17

is described below, followed by an outline of the scripts’ inputs, and effects. Appendix A contains the complete

code.

 References to the scripts in the project description that follows refers to this categorization using the nota-

tion G|01 for General 01 which refers to the annotateWithoutLeader() script. Or R|03 for the driveCVs()

script in the Relationships category, and so on.

18

1. General tools

 One of the primary methods of customizing Maya’s interface is the

expansion of the basic tool set. Although this is the most basic form of

script writing, these are the foundations for building a modeling environ-

ment which is more capable of supporting architectural intentions and sets

up some basic functions which get used extensively in the progression of

the project.

G|01. annotateWithoutLeader()

Input:

- Selected Maya object (transform node)

- Text fi eld describing the annotation

Effect:

Attaches an annotation to the selected object. The existing Annota-

tion tool attaches a Locator and Leader pointing from the annota-

tion to the object. For neatness, this modifi cation eliminates both

Locator and Leader and attaches the annotation at the object’s

pivot.

19

G|02. buildTwistedSurface()

Input:

- Number of ribbons

- Twisting data or twisting logic. This entails, for each ribbon, the

degree of the twist, and a translation or an algorithm which de-

scribes such twisting and translation.

Effect:

Generates a NURBS surface divided into ribbons, the ends of which are

transformed according to the inputs. This surface serves as starting point

for the building’s form and is later used with no initial inputs and is trans-

formed by the data model.

G|03. createBox()

Input:

 - Length, width, and height

 - Translation, X, Y, Z

Effect:

Creates a polygon cube (Maya primitive) with given length, width, and

height, and given translation from origin. Normal creation of a polygon

cube in Maya is limited to width, height, and depth but does not include

20

translation.

G|04. createCleanSquare()

Input:

 - Length, width

Effect:

Built in creation of a NURBS square creates a group of four individual,

disconnected, linear segments. This modifi cation of the Create NURBS

Square command creates a single, continuous, linear NURBS curve. This

functions more cleanly as a profi le for extrusion along a path.

G|05. createCurveFromPolygonVerts()

Input:

 - Selected polygon vertices

Effect:

Creates a closed, linear NURBS curve using the selected polygon vertices

as control vertices for the curve.

21

G|06. createStairs()

Input:

 - Rise, run

 - Stair width

 - Number of steps

Effect:

Creates a staircase by generating a closed curve using the given rise and

run and number of steps, creating a plane from the curve, and extruding

the plane the given width.

G|07. createStairsFromCurves()

Input:

 - Height

 - Number of steps

 - Selected two NURBS curves

Effect:

Rise and run are calculated according to the desired height and step Rise and run are calculated according to the desired height and step

count. Creates a staircase by lofting a surface between two stair profi les count. Creates a staircase by lofting a surface between two stair profi les

which are generated along the selected input curves.

22

G|08. extractIsoparms()

Input:

 - Selected NURBS surfaces

Effect:

Rebuilds the selected surfaces and duplicates isoparms at U values of 0.0,

0.25, 0.5, 0.75, and 1.0. The duplicated surface curves are grouped in

order with the prefi x “isoparmGroup”.

G|09. extrudePolyline()

Input:

 - Height

 - Selected NURBS curves

Effect:

Planarizes the selected curves and extrudes the resultant surfaces by the

given height. This could be thought of as the converse of the createCurve-

FromPolygonVerts script.

23

G|10. fl attenCVs()

Input:

 - Axis

 - Selected CVs of a NURBS curve

Effect:

Flattens the selected curve control vertices along the given axis. The CVs

are effectively planarized at their geometrical center.

G|11. fl attenNURBS()

Input:

 - Axis

 - Selected NURBS surface

Effect:

Flattens the selected surface along the given axis.

G|12. insertIsoparmAt()

Input:

 - Location in U or V along surface

 - Selected NURBS surfaces

24

Effect:

Inserts an isoparm on the selected surfaces at the given location in the U

or V axis.

G|13. makeLocatorsRenderable()

Input:

 - Size, thickness

 - Selected locators for rendering

Effect:

In Maya, locators are one-dimensional point objects which don’t appear

when rendering the scene. makeLocatorsRenderable creates a solid ge-

ometry which resembles the screen appearance of a locator and attaches

their positions. The new geometry is visible when the scene is rendered.

G|14. moveCurvePivot()

Input:

 - Selected CV of a NURBS curve

Effect:

It is sometimes necessary to snap a curve’s endpoint to the endpoint of

another curve, the vertex of a polygon, etc. This often entails moving the

25

curve’s pivot to a CV at the endpoint. However, it is impossible to view a

curve’s CVs and move the pivot simultaneously. moveCurvePivot resolves

this by allowing the user to simply specify the desired CV for the new pivot

position.

G|15. relativeMove()

Input:

 - Translate X, Y, Z

 - Units (inches, feet, meters)

 - Selected object (Maya transform node)

Effect:

Translates the selected objects the given number of units. Optional move-

ment in inches, feet, or meters can be specifi ed assuming the model is set

up where one unit = one foot. This is useful when modeling or moving

something that has information in meters when the rest of the model is in

English units (for example, a 50 meter swimming pool in a 200 foot wide

site).

G|16. showHiddenChildren()

Input:

26

 - Selected object (Maya transform node)

Effect:

If hidden, unhides the object and all of it’s children. The given unhide

command in Maya will unhide the selected object but, if they are hidden,

it’s children remain hidden.

G|17. thickenSurfaces()

Input:

 - Thickness

 - Selected NURBS surface

Effect:

Offsets the selected NURBS surface by the given thickness, and lofts sur-

faces around all four edges of the two. This effectively thickens the sur-

face, often in preparation for some form of fabrication (rapid prototyping).

An extension of this script connects all of the surfaces and converts it to a

solid polygon which is typically more useful for fabrication techniques.

2. Automation

In some ways this type of script is resorting to the type of operation origi-

nally intended for loom: the identically repeated execution of a task. It is

27

arguable that all of the scripts would fall under the category of Automa-

tion since they are all, in some way, automating a set of operations. These

however, are written specifi cally for the repetition of an often simple oper-

ation which would otherwise be a tedious task. The more powerful scripts

in this category actually transform the operation according to an algorithm,

variable, geometry, or specifi c user input.

A|01. booleanMulti()

Input:

 - Selection of polygon objects

 - Selected polygon knife

Effect:

Boolean operations in Maya must be done one pair of objects at a time.

booleanMulti (actually a misnomer: should read booleanSubtractMulti)

takes the selected objects and repeatedly subtracts the last selected object

(the knife) from each of them.

A|02. createMullions()

Input:

 - Mullion count

28

 - Start at (greater than zero), end at (less than count)

 - Profi le

 - Selected NURBS surface

Effect:

Subdivides the selected surface into the number of specifi ed mullion

segments and lofts the specifi ed profi le along the isoparms. In effect, a

NURBS surface is created as the fenestration and its structural members

are generated by the script.

A|03. extrudeProfi leOnSelectedCurves()

Input:

 - Profi le NURBS curve

 - Selected NURBS curves

Effect:

Extrudes the specifi ed profi le along each of the selected NURBS curves.

A|04. extrudeProfi leOnSelectedIsoparms()

Input:

 - Profi le NURBS curve

 - Selected isoparms of NURBS surfaces

29

Effect:

Similar to extrudeProfi leOnSelectedCurves(), but operates on NURBS

isoparms instead.

A|05. fi xIsoparms()

Input:

 - selected NURBS surfaces

Effect:

Inserts isoparms at a specifi c location on each selected surface. (Note: this

script was highly task specifi c and was written as a one-off use correction

of a geometrical error.)

A|06. generateLinesFromStrips()

Input:

 - Starting point

 - Increment and count

 - Selected NURBS surfaces

Effect:

Duplicates a sequence of isoparms specifi ed by starting point, increment,

and count along the selected NURBS surfaces.

30

A|07. makeColumns()

Input:

 - Profi le NURBS curve

 - Selected NURBS surface

Effect:

Creates a matrix of columns underneath the selected surface using the

specifi ed curve as the column profi le.

A|08. sawToothLines()

Input:

 - Selected sequence of (approximately) vertical (Y-axis) NURBS

curves

Effect:

Iterates through the selected vertical lines and joins them to form a saw-

tooth profi le intended to act as bracing for a truss.

3. Relationships

One of the most powerful aspects of Maya is the ability to set up relation-

31

ships between objects’ attributes. There is a fairly robust core set of rela-

tionships that are built into the software and can be applied easily to any

transform node in Maya. Some of the basic relationships are called con-

straints which, for example, cause one object to maintain the same orien-

tation as another (like the front wheels of a car), or cause one object to

constantly remain oriented towards another (like a compass needle point-

ing north). The connection editor allows even more complex relationships

to be established. Using this dialogue, relationships between any attribute

of an object and any attribute of another object can be established. For

example the rotation of an object can be wired to the scale of another; or

the color attributes of a material can be wired to the location attributes

of an object. Even more complex relationships can be established using

the Expression Editor. Similar to the connection editor, relationships be-

tween any two attributes of any two objects can be established, but using

expressions, functions and algorithms can describe these connections in

much more complex ways.

The following scripts employ one, or a combination of these relationship-

establishing techniques to “wire” the attributes of objects in the scene and

help build a much more complex 3D model.

32

R|01. attachToSurfaceWithGeoConstraint()

Input:

 - NURBS surface base shape to receive units

 - Unit geometry for duplication and application to surface

Effect:

The unit geometry is point-constrained to the CVs of the specifi ed surface.

In order to maintain orientation, a geometry constraint is also applied

between each unit and the surface. An extension of this script wires the

locations of the units to the CVs and when the base surface is deformed,

the units maintain their surface relationship with it.

R|02. createLinearNodeConnection()

Input:

 - Profi le NURBS curve

 - Existing curve group and existing surface group

 - Two selected transform nodes (ideally locators)

Effect:

Creates a linear curve spanning between the selected objects and extrudes

the profi le curve along it. The position of the ends of the curve are wired

33

to the position of the locators the connection remains when the locators

are moved. This script can be used repeatedly to establish a network of

connections between a fi eld of nodes. The spatial confi guration of the net-

work can be modifi ed but will maintain the same topology of connections.

R|03. driveCVs()

Input:

 - Selected transform node (ideally a locator)

 - Four selected CVs of a NURBS surface

Effect:

Wires the Y value of the selected object to the Y values of the four select-

ed CVs of the surface. Thus, when the locator is moved in the Y direction,

the specifi ed CVs of the surface follow accordingly. ** This script is used in

conjunction with the following expression.

Expression: nodeHeightByProximity()

Input:

 - N/A

Effect:

When used in tandem with the driveCVs() script and a network of locators,

34

this expression detects the proximity of a locator to each of the driving

locators in the driveCV system. If a network locator is near enough, the Y

value of a driver locator is changed, thus, deforming a the NURBS surface

to which that locator is connected.

4. Behavioral

The next level of scripting takes these tools to the next level where their

purpose is to cause objects in the scene to be generated, modifi ed, or

connected based on desired behaviors described by an algorithm, envi-

ronmental variables, material properties, a simulated force system, etc.

These behavioral scripts often transcend the sum of a set of Maya func-

tions because they begin to describe systems of information that relate to

phenomena which can’t easily be described only in terms of the scripting

language.

B|01. createPoolRoof()

Input:

 - Roof load in PSF

 - Steel tensile stress in PSI

35

 - Number of Spans

 - Number of trusses per column

 - Vertical fl uctuation at each column set

 - Truss webbing spans

 - Spatial positioning of locators to indicate pool length, width, and

depth, deck width on both sides, and truss depth.

Effect:

Used in conjunction with the expression updateTrussSystem() this script

generates a dynamic structural system for a roof with trusses and steel

members sized appropriately to minimize steel cost. The overall size of the

structure is given by the position of the locators. Truss depth and steel

member size are inversely proportional according to structural calculations.

The truss depth can be adjusted and member sizing updated in real-time.

At mid-semester this script was instrumental in developing the project

further. Although the emphasis shifted away from manufacturing toward

parametrics, the roof frame that this script generated was hybridized with

two other schemes to form the fi nal building structure.

expression: updateTrussSystem()

36

Input:

 - N/A

Effect:

Applied after executing the createPoolRoof() script, this expression up-

dates truss parameters when the original locators are adjusted. In particu-

lar, if the locator describing the truss depth is moved, the trusses update

their arcs, and the truss members update their cross-sectional area.

B|02. panelizeSurface()

Input:

 - Booleans indicating whether or not to create beams, holes, or

hydro elements in the slab

 - Slab count, start at, and end at

 - Slab sizing parameters: thickness, gab between slabs, web depth,

web offset from edge

 - Hole sizing parameters: offset from web, offset from beam, light

node effect

 - System of “light nodes” - locators with spheres associated with

them to indicate porosity in the slabs

 - Selected NURBS surface

37

Effect:

Using the selected surface as a guide, geometry representing double-T

precast concrete slabs are generated in sequence along the surface. The

slab geometry is generated entirely by the script, thus, everything about

it’s sizing is parameterized. The holes are calculated according to the

positioning of light nodes. If a light node is in proximity to a slab element,

the distance to the light node is calculated, and a hole opens in the slab,

sized based on the distance. In effect, the holes in the slabs are a ghost

of the locations of the locators and their associated spheres. Ideally, this

script would be used in conjunction with an expression (not described in

this paper) which caused the hole confi guration in the slabs to update in

real-time as the positioning of the light nodes is changed.

B|03. snapshots()

Input:

 - Polygon geometry for “base unit”

 - Start number and count

 - Bank threshold

 - Selected NURBS curves

Effect:

38

Animates the polygon geometry along the selected curves using the indi-

cated bank threshold. When used carefully in combination with the cur-

vature of a series of approximately parallel curves, the bank can cause

controlled openings in the system of units. The relationship between the

swarm of units and the curves is kept after the script is run so that modifi -

cation of the base unit or the curves automatically updates the confi gura-

tion of the system. This script, like createPoolRoof() was hybridized

with two other ideas about the building structure to form the fi nal struc-

tural scheme.

39

Process

 The scope and level of detail of the 3D model are an effect of the desired products the model is intended

to produce. In this case, an architectural thesis project in an academic setting, where the output is digital render-

ings, diagrams, and 3D prototypes. Similarly, the scripts which are built to support this output are written with the

intention of achieving the same goals - in fact, some of the scripts are written specifi cally for the translation of the

model to the output. To refer again to some of the original aspirations of this project and the relationship of this

process to manufacturing, I argue that the potential for the model and it’s accompanying scripts can be extrapolat-

ed to perform a similar task if charged with the job of producing, say, construction documents, or digital fabrication

information.

 Programmatic information about the pool, as a type, is derived from precedents of swimming pool design

and general architectural knowledge about the swimming pool type (Graphic Standards). That information is em-

bedded into a spatial data network model which contains information about each program element of the build-

ing. The site is confi gured as a series of bands, or ribbons, continuous with the site topography which the model is

connected to. An initial form is chosen from versions of this model generated by modifying the confi guration of the

network and its input data. Next, several structural ideas are explored, and hybridized to form a virandeel truss-

like system which is a result of the cross-sectional twisting of the ribbons. Long structural steel spans are extruded

along isoparms of the NURBS which defi ne the ribbons. Several possibilities for the building envelope are also

explored which become a pre-cast double-T concrete slab spanning between the long steel spans. Openings in the

concrete units are defi ned by a light-node system and algorithm. The nodes are confi gured according to data from

40

the original network model.

 The following sections outline the design process and describe the ways in which the above scripts have

been instantiated. Four stages are outlined starting with a data model, mapping form to the data, followed by

structural and skin solutions.

41

 The images preceeding, below, and on the following page graphically outline the process of coding and

versioning. A horizontal box contains a sequence of operations which defi ne a coded operation and a vertical box

contains a selection of the versions that code produced.

42

43

iii. Data Model

 As a way to understand the program for the swimming pool type and the site a 3D networked data model

was built. The nodes in the network correspond to program elements and have attributes associated with them to

describe their spatial requirements (length, width, height), light needs (quantity, quality, natural, artifi cial, etc.),

water requirements (potable, chlorinated, sewage, etc.), electrical, and so on.

 The original topology of the network is derived from a program diagram used to layout the circulation of

the Raumzuordnung und Wegefuhrung im Hallenbad pool 1. The digital model for this project is constructed and is

operated by scripts for establishing and keeping spatial relationships between its nodes.

44

Original 3D data model

45

Data model node for the lap pool

46

Complete data network

47

Network confi gurations

48

Network

confi gurations

49

iv. Mapping Form to Data

 The steep slope of the site is one of the primary considerations in how form gets mapped to the network

diagram. The site is divided into a sequence of ribbons - long strips extending beyond the limits of the lot. The

network model is overlaid on the site with the ribbons and their geometry is wired to the confi guration of the net-

work diagram. Information about spatial requirements of program elements embedded in the data model effect the

heights of the ribbons to accommodate.

50

Above: the site confi gured as a series of north-south oriented ribbons stretching into the fabric of the city. The site

block is in red.

51

Reconfi guration of the ribbons

52

Scripted ribbon reconfi guration on site

53

Scripted ribbon reconfi guration on site

54

v. Structure

55

Implementation of createPoolRoof() script

56

Implementation of createPoolRoof() script

57

Versioning of

createPool-

Roof() script

58

Final implementation of createPoolRoof() script

59

60

Structural unit aggregation: cast concrete

61

Stereolithograph prototype model of structural unit aggregation

62

Concrete double-T unit sketch

vi. Skin

63

Profi le extrusion and initial slab formation

64

Unit aggregation and effect by light nodes

65

Exploded axo of fi nal proposition

vii. Building

66

67

Plan

68

Section

69

70

Mesh model for fi nal STL print

71

Mesh model for fi nal STL print

72

STL assembly

73

Final STL model

74

75

76

77

Aftermath, 05.01.2005

78

Conclusion

 In order for computers to be creative, they must be able to not only represent objects, events, and rela-

tionships, but also understand their meaning. 1 Historically, the idea about the role of computers in design is as

assistants with tedious number crunching work. Evaluation of meaning and value judgement is then done by the

human. 2 But, as computer power increases and systems for artifi cial intelligence become more sophisticated, it is

beginning to seem feasible for computers to make those judgements. The line between which tasks are done inde-

pendently between the designer and computer gets blurred.

 Computers are quite capable of problem solving as long as the environment and performance measures

are clearly defi ned. The problem with design is how to defi ne that environment and performance, if it is even

possible. 3 Some have tried to defi ne this environment and establish measures of performance. In A Pattern Lan-

guage, Christopher Alexander established a rational method for designing buildings that is clear enough to be

programmed. However, the success of the measure of performance remains arguable. 4

 In general, the push seems to be for computers to perform more like humans. One fi nds nothing surprising

in searching for the emergence of some sort of intelligence in computer behavior. Nothing surprising, insofar as

79

artifi cial intelligence is still the sum of a set of procedures and algorithms, and when such a system is understood

completely, the performance is predictable and machine-like. There is no surprise. However, as designers and

programmers allow computers to continue to infl uence their work, there is an equal push in the other direction: a

push from computers causing humans to perform more like machines. As the language of machines and algorithms

continues to infi ltrate our design intentions, and the values of human judgement and performance gets inscribed

and encoded as programs, the hybridization results in a new breed of designer, feeding off of the synergy of the

human-machine interaction.

 Although the scope of the fi nal product of this project is a set of Maya scripts and a design proposition, I

hope to extrapolate the implications that this process has for the actual fabrication of buildings and their constitu-

ent elements. Alexander begins his Notes on the Synthesis of Form with the statement “The ultimate object of Notes on the Synthesis of Form with the statement “The ultimate object of Notes on the Synthesis of Form

design is form.” Ultimately, and ideally, the processes described by this project are about the production of objects

and their formation. Part of the original intentions of this project were to address these issues explicitly and to

explore the realm of human-computer interaction at the level of how digital information gets translated to fabrica-

tion machines, and ultimately form. My own desire to more deeply understand the languages within that transla-

tion caused the focus to shift entirely towards the programming realm. Methods of computer aided manufacturing,

however, remain extremely pertinent to this exploration and in another thesis project those issues would be ad-

dressed and would bolster the proposition given here.

 At the fi nal review for this project, Neil Denari recognized a relationship in the fi nal proposition between a

rational, clinical approach to design and something that is about an idea of site and fl ow. While the focus of my

presentation was on the process and scripting, he raised a point about “desire” as somewhere to look for other

80

means to argue for the project. Agendas and plans of action that are larger will then come forth as arguments, and

they are debatable because they are rooted in desire. These greater ideas are what propositions of architecture are

really about.

Endnotes

1 - Introduction

1 Branko Kolarevic, Architecture in the Digital Age:
Design and Manufacturing. (New York: Spon Press,
2002), 13.

2 Hans Walser, The Golden Section. (USA: The Math-The Golden Section. (USA: The Math-The Golden Section
ematical Association of America, 2001).

3 Le Corbusier
4 Ben van Berkel and Caroline Bos, MOVE. (Amster-

dam: UN Studio & Goose Press, 1999). 15.
5 Stuart Russel and Peter Norvig. Artifi cial Intelligence

a Modern Approach. (Upper Saddle River: NJ, Pren-
tice Hall, 2003).

6 MEL - Maya Embedded Language: An interpreted
scripting language for quick access and control of
Maya’s functions.

7 Neil Leach. Digital Tectonics. (Great Britain: Digital Tectonics. (Great Britain: Digital Tectonics Wiley-
Academy, 2004). 71.

2 - Precedents

1 Neil Leach. Digital Tectonics. (Great Britain: Digital Tectonics. (Great Britain: Digital Tectonics Wiley-
Academy, 2004). 129-135.

2 Branko Kolarevic, Architecture in the Digital Age:

Design and Manufacturing. (New York: Spon Press,
2002), 53.

3 Benjamin H. Bratton, “The Premise of Recombinant
Architecture: One.” Architectura e cultura digitale,
April 6, 2003, https://www.autistici.org/mailman/
public/rekombinant/2003-April/002787.html

4 Branko Kolarevic, Architecture in the Digital Age:
Design and Manufacturing (New York, Spon Press,
2002), 125. For more information see: Gernot
Brauer (ed), A. von Iersel (trans), Architecture as
Brand Communication: Dynaform + Cube. (BeBrand Communication: Dynaform + Cube. (BeBrand Communication: Dynaform + Cube rlin:
Birkhauser, 2002)

5 Albert Ferre, Tomoko Sakamoto, and Michael Kubo
(ed), The Yokohama Project, Foreign Offi ce Archi-
tects (tects (tects Barcelona: Actar, 2002). 10-13.

6 Kostas Terzidis, “Algorithmic Architecture.” 2004,
http://www.bol.ucla.edu/~kostas/algorithmicArchi-
tecture.html

3 - Project

1 Von Dietrich Fabian, Moderne Schwimmstatten der
Welt. (Carl Schunemann Verlang Bremen, 1963). 41.

4 - Conclusion

1 Kostas Terzidis, Expressive Form: A Conceptual
Approach to Computational Design. (London: Spon Approach to Computational Design. (London: Spon Approach to Computational Design
Press, 2004).

2 Christopher Yessios, “Syntactic Structures for Site
Planning”, in W.F.E.Preiser (ed.) Environmental

Design Research, Proceedings of the EDRA 4 Con-
ference. (Stroudsbourg: Dowden, Hutchinson and
Ross, 1973).

3 Kostas Terzidis, Expressive Form: A Conceptual
Approach to Computational Design. (London: Spon
Press, 2004).

4 Christopher Alexander, Notes on the Synthesis of
Form. (Cambridge, MA: Harvard University Press,
1966).

A+A Architectureanimation 2002, Collegi d’Arquitectes A+A Architectureanimation 2002, Collegi d’Arquitectes A+A Architectureanimation
de Catalunya.

Bits and Spaces 2001, Birkhauser, Basel, Boston, Ber- 2001, Birkhauser, Basel, Boston, Ber- 2001
lin.

Bratton, Benjamin H. “The Premise of Recombinant
Architecture: One.” Architectura e cultura
digitale, April 6, 2003, https://www.autis-digitale, April 6, 2003, https://www.autis-digitale
tici.org/mailman/public/rekombinant/2003-
April/002787.html

Brauer, G. (Editor), von Iersel, A. (Translator). Archi-
tecture as Brand Communication: Dynaform +
Cube. Berlin: BirkhauserCube. Berlin: BirkhauserCube , 2002. Berlin: Birkhauser, 2002. Berlin: Birkhauser .

Alexander, Christopher. Notes on the Synthesis of
Form, (Cambridge, MA: Harvard University PressForm, (Cambridge, MA: Harvard University PressForm ,
1966).

Boyer, C.M. Cybercities. New York, NY: Cybercities. New York, NY: Cybercities Princeton Ar-
chitectural Press, 1996.

DeLanda, M. A Thousand Years of Nonlinear History.
New York, NY: Swerve, 2000.

Bibliography Dollens, D. Digital to Analog, New Mexico: SITES Digital to Analog, New Mexico: SITES Digital to Analog
Books, 2001.

Estevez, A. Genetic Architectures, New Mexico: Sites Genetic Architectures, New Mexico: Sites Genetic Architectures
Books, 2003.

Fabian, Von Dietrich, Moderne Schwimmstatten der
Welt. Carl Schunemann Verlang Bremen, 1963.Welt. Carl Schunemann Verlang Bremen, 1963.Welt

Ferre, Albert, Tomoko Sakamoto and Michael Kubo,
eds. The Yokohama Project, Foreign Offi ce Ar-
chitects. Barcelona: Actar, 2002.

Galofaro, L. Digital Eisenman: An Offi ce of the Elec-
tronic Era, Switzerland: Birkhauser, 1999.

Horan, T. Digital Places, Building our City of Bits.
Washington: Urban Land Institute, 2000.

Johnson, S. Emergence: The Connected Lives of Ants,
Brains, Cities, and Software, New York, NY: Brains, Cities, and Software, New York, NY: Brains, Cities, and Software
Scribner, 2001.

Kelly, Kevin Out of Control, Cambridge, MA: Basic Out of Control, Cambridge, MA: Basic Out of Control
Books, 1994.

Kolarevic, Branko. Architecture in the Digital Age: De-
sign and Manufacturing, New York: Spon Press, sign and Manufacturing, New York: Spon Press, sign and Manufacturing
2003.

Kwinter, S. Architectures of Time: Toward a Theory of
the Event in Modernist Culture, Massachusetts: the Event in Modernist Culture, Massachusetts: the Event in Modernist Culture
MIT Press, 2001.

Leach, Neil. Digital Tectonics. Great Britain: Digital Tectonics. Great Britain: Digital Tectonics Wiley-
Academy, 2004.

Lindsey, B., Digital Gehry: Material Resistance Digial Lindsey, B., Digital Gehry: Material Resistance Digial Lindsey, B.,
Construction, Switzerland: Birkhauser, 2001.Construction, Switzerland: Birkhauser, 2001.Construction

Liu, Y. Developing Digital Architecture. Boston:
Birkhauser, 2003.

McCullough, M. Digital Ground, Architecture, Perfasive
Computing, and Environmental Knowing, Mas-Computing, and Environmental Knowing, Mas-Computing, and Environmental Knowing
sachusetts: MIT Press, 2004.

Mitchell, W. The Logic of Architecture: Design, Com-
putation, and Cognition, Cambridge, Massa-putation, and Cognition, Cambridge, Massa-putation, and Cognition
chusetts: MIT Press, 1990.

Russell, Stuart and Peter Norvig. Artifi cial Intelligence
a Modern Approach, Upper Saddle River, NJ: a Modern Approach, Upper Saddle River, NJ: a Modern Approach
Prentice Hall, 2003.

SHoP/Sharples Holden Pasquarelli (ed). Versioning:
Evolutionary Techniques in Architecture Great Evolutionary Techniques in Architecture Great Evolutionary Techniques in Architecture
Britain: Wiley-Academy, 2002.

Terzidis, Kostas. “Algorithmic Architecture.” 2004,
http://www.bol.ucla.edu/~kostas/algorithmi-
cArchitecture.html

Terzidis, Kostas. Expressive Form: A Conceptual Ap-
proach to Computational Design. London: Spon proach to Computational Design. London: Spon proach to Computational Design
Press, 2004.

van Berkel, B. & Bos, C. MOVE, Amsterdam: UN Stu-MOVE, Amsterdam: UN Stu-MOVE
dio & Goose Press, 1999.

Yu, L. Number-Based Design Reasoning Systems,
Technische Universiteit Delft: Publikatieburo
Bouwkunde, 1994.

85

A. MEL Scripts

G|01. annotateWithoutLeader()

proc annotateWithoutLeader()
{
 string $text;
 string $result = `promptDialog
 -title “AnnotateNoLeader”
 -message “Text:”
 -button “OK” -button “Cancel”
 -defaultButton “OK” -cancelButton “Cancel”
 -dismissString “Cancel”`;
 if($result == “OK” && `promptDialog -q -text` != “”)
 {
 $text = `promptDialog -query -text`;

 string $selected[] = `selectedNodes`;

 int $i=0;
 for($i=0; $i<size($selected); $i++)
 {
 string $node = $selected[$i];
 fl oat $pos[] = `objectCenter $node`;
 annotate -text $text -p $pos[0] $pos[1] $pos[2] $node;
 setAttr “annotationShape1.displayArrow” 0;
 parent “annotation1” $node;
 rename “annotation1” (“annotation” + $i);
 }
 }
}

i. General

86

G|02. buildTwistedSurface()

proc construct()
{
 string $planeID = “sourcePlane2”;
 string $existingShader = “blinn1”;
 int $i;

 nurbsPlane -n ($planeID +”1”) -p 1 0 2 -ax 0 1 0 -w 2 -lr 2 -d 3 -u 20 -v 6 -ch 1;
 assignSG $existingShader ($planeID +”1”);
 for($i=1; $i<20; $i++)
 detachSurface -n ($planeID +($i+1)) -ch 1 -rpo 1
 ($planeID +$i +”.u[“+($i*0.05)+”]”);

// nurbsPlane -n ($planeID +”21”) -p 1 0 2 -ax 0 1 0 -w 2 -lr 2 -d 3 -u 20 -v 6 -ch 1;
// assignSG $existingShader ($planeID +”21”);
// for($i=1; $i<20; $i++)
// detachSurface -n ($planeID +($i+21)) -ch 1 -rpo 1
// ($planeID +($i+20) +”.u[“+($i*0.05)+”]”);

 xformGroup2($planeID);
 select -cl;
}

proc xformGroup2(string $planeID)
{
 int $i;
 for($i=1; $i<=20; $i++)
 {
 int $rot = ($i%5==2 ? -90 : ((($i-1)%5)%2)*90);
 fl oat $x = (((($i-1)%5)*.05)-.1)*-1;
 fl oat $y = -.2 + abs(((($i-1)%5)-2))*.05;

 xformEnd($planeID, $i, $rot, $x, $y);
 }

/* xformEnd($planeID, 1, 0, .1, -.1);
 xformEnd($planeID, 2, -90, .05, -.15);

87

 xformEnd($planeID, 3, 0, 0, -.2);
 xformEnd($planeID, 4, 90, -.05, -.15);
 xformEnd($planeID, 5, 0, -.1, -.1);

 xformEnd($planeID, 6, 0, .1, -.1);
 xformEnd($planeID, 7, -90, .05, -.15);
 xformEnd($planeID, 8, 0, 0, -.2);
 xformEnd($planeID, 9, 90, -.05, -.15);
 xformEnd($planeID, 10, 0, -.1, -.1);

 xformEnd($planeID, 11, 0, .1, -.1);
 xformEnd($planeID, 12, -90, .05, -.15);
 xformEnd($planeID, 13, 0, 0, -.2);
 xformEnd($planeID, 14, 90, -.05, -.15);
 xformEnd($planeID, 15, 0, -.1, -.1);

 xformEnd($planeID, 16, 0, .1, -.1);
 xformEnd($planeID, 17, -90, .05, -.15);
 xformEnd($planeID, 18, 0, 0, -.2);
 xformEnd($planeID, 19, 90, -.05, -.15);
 xformEnd($planeID, 20, 0, -.1, -.1);
*/
 xformSequence($planeID, 1, 20, 0, 0, -.3);

 groupSequence(“redGroup”, $planeID, 1, 20);
 move 0 .2 0 redGroup;
}

proc xformGroup1(string $planeID)
{
 xformEnd($planeID, 1, 0, 0, 0.3);
 xformEnd($planeID, 2, 90, -0.05,0.35);
 xformEnd($planeID, 3, 0, -0.1, 0.3);
 xformEnd($planeID, 4, 90, -0.15, 0.35);
 xformEnd($planeID, 5, 0, -0.2, 0.4);
 xformEnd($planeID, 6, 0, -0.3, 0.5);
 xformEnd($planeID, 7, -90, -0.35, 0.45);
 xformEnd($planeID, 8, 0, -0.5, 0.3);
 xformEnd($planeID, 9, 0, -0.3, 0.3);

88

 xformEnd($planeID, 10, -90, -.35, 0.25);
 xformEnd($planeID, 11, 0, -.2, .1);
 xformEnd($planeID, 12, 90, -0.25, 0.15);
 xformEnd($planeID, 13, 0, -.1, .2);
 xformEnd($planeID, 14, -90, -0.15, 0.15);
 xformEnd($planeID, 15, 0, -.2, .1);
 xformEnd($planeID, 16, 0, -.1, .1);
 xformEnd($planeID, 17, 0, 0, .1);
 xformEnd($planeID, 18, 0, 0, .1);
 xformEnd($planeID, 19, 0, 0, .1);
 xformEnd($planeID, 20, 0, 0, .1);

 xformEnd($planeID, 21, 90, -.05, -.05);
 xformEnd($planeID, 22, 0, -.1, 0);
 xformEnd($planeID, 23, 0, -.2, .1);
 xformEnd($planeID, 24, 0, -.1, .2);
 xformEnd($planeID, 25, -90, -.15, .15);
 xformEnd($planeID, 26, 0, -.1, -.1);
 xformEnd($planeID, 27, 0, -.2, -.2);
 xformEnd($planeID, 28, 90, -.25, -.15);
 xformEnd($planeID, 29, 0, -.1, -.2);
 xformEnd($planeID, 30, 90, -.15, -.25);

 xformEnd($planeID, 31, 0, -.2, 0);
 xformEnd($planeID, 32, 90, -.15, .05);
 xformEnd($planeID, 33, -90, -.15, .05);
 xformEnd($planeID, 34, 0, -.1, 0);
 xformEnd($planeID, 35, 0, -.1, -.1);
 xformEnd($planeID, 36, 0, 0, -.1);
 xformEnd($planeID, 37, 0, 0, 0);
 xformEnd($planeID, 38, -90, -.05, -.05);
 xformEnd($planeID, 39, 0, 0, 0);
 xformEnd($planeID, 40, -90, .05, -.05);

 groupSequence(“group1”, $planeID, 1, 20);
 groupSequence(“group2a”, $planeID, 21, 30);
 groupSequence(“group2b”, $planeID, 31, 40);

 move -r 0 0.4 0 group2a;

89

 move -r 0 0.2 0 group2b;
}

proc xformEnd(string $planeID, int $stripNum, int $rot1, fl oat $x1, fl oat $y1)
{
 fl oat $px = (fl oat)(($stripNum-1)%20)/10 + 0.05;
 rotate -r -p $px 0 0 -os 0 0 $rot1 ($planeID + $stripNum + “.cv[0:3][6:8]”);
 move -r $x1 $y1 0 ($planeID + $stripNum + “.cv[0:3][6:8]”);
}

proc xformSequence(string $planeID, int $fi rst, int $last, fl oat $x, fl oat $y, fl oat $z)
{
 int $i;
 for($i=$fi rst; $i<=$last; $i++)
 move -r $x $y $z ($planeID + $i + “.cv[0:3][5]”);
}

proc groupSequence(string $name, string $root, int $a, int $b)
{
 group -n $name -r -em;
 xform -os -piv 0 0 0;

 int $i;
 for($i=$a; $i<=$b; $i++)
 parent ($root+$i) $name;
}

construct();

90

G|03. createBox()

// Create box of specifi ed length, width, and height

proc check(string $theName)
{
 string $theName;
 if (`window -exists $theName`)
 deleteUI $theName;
}

proc createBoxCmd()
{
 global fl oat $whd[], $txyz[];
 string $bx[] = `polyCube -w $whd[0] -h $whd[1] -d $whd[2] -ax 0 1 0 -tx 1 -ch 1`;
 move $txyz[0] $txyz[1] $txyz[2] $bx[0];
 print(generateCompliment());
}

proc createBox()
{
 global fl oat $whd[] = {1,1,1};
 global fl oat $txyz[] = {0,0,0};
 int $winW=400, $winH=110;

 // Window setup
 string $winName = “Create_Box”;
 check($winName);
 window -mxb 0 $winName;

 // Defi ne components
 string $form = `formLayout - numberOfDivisions 100`;
 string $whdInputField = `fl oatFieldGrp -numberOfFields 3
 -v1 1 -v2 1 -v3 1
 -label “Width, Height, Depth”
 -cc “$whd = `fl oatFieldGrp -q -v whdInput`;” whdInput`;
 string $txyzInputField = `fl oatFieldGrp -numberOfFields 3
 -label “Translate X,Y,Z”

91

 -cc “$txyz = `fl oatFieldGrp -q -v txyzInput`;” txyzInput`;
 string $createButton = `button -label “Create”
 -command (“createBoxCmd();”)`;

 int $margin = 5;
 formLayout -edit
 -attachForm $whdInputField “right” $margin
 -attachForm $txyzInputField “right” $margin
 -attachControl $txyzInputField “top” $margin $whdInputField
 -attachControl $createButton “top” $margin $txyzInputField
 -attachForm $createButton “right” $margin
 $form;

 window -e -widthHeight $winW $winH $winName;
 showWindow $winName;
}

proc string generateCompliment()
{
 string $comments[] = {
 “You are a scintillating wonder of piety!!!!!!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are a delightful model of victory!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are a jubilant personifi cation of faith!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are a tireless instance of insight!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are clearly an attractive embodiment of courage!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are clearly a veritable realization of acumen!!!!!!!!!!!!!!!!!!!!!!!”,
 “You effortlessly devise the most clever solution to every prob-
lem!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are a fearless paradigm of a genius!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are an outstanding veteran of piety!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are an extraordinary harbinger of wisdom!!!!!!!!!!!!!!!!!!!!!!!”,
 “You are an undisputed instance of a friend!!!!!!!!!!!!!!!!!!!!!!!”
 };

 return toupper($comments[(int)rand(size($comments))]);
}

createBox();

92

G|04. createCleanSquare()

proc createCleanSquare()
{
 // Variables
 fl oat $ccsw=1, $ccsh=1;
 int $winW=300, $winH=50;

 // Window setup
 string $winName = “MakeCurve_SQUARE”;
 window -mxb 0 $winName;

 // Defi ne components
 string $form = `formLayout - numberOfDivisions 100`;
 string $widthLabel = `text -label “X” -align “left”`;
 string $heightLabel = `text -label “Z” -align “left”`;
 string $widthField = `fl oatField -v $ccsw
 -cc “$ccsw = `fl oatField -q -v wfl d`;” wfl d`;
 string $heightField = `fl oatField -v $ccsh
 -cc “$ccsh = `fl oatField -q -v hfl d`;” hfl d`;
 string $goButton = `button -label “Create”
 -command (“createCleanSquareCmd($ccsw, $ccsh);”)`;

 // Layout
 int $margin = 5;
 formLayout -edit
 -attachForm $widthLabel “left” $margin
 -attachControl $widthField “left” $margin $widthLabel
 -attachControl $heightLabel “left” $margin $widthField
 -attachControl $heightField “left” $margin $heightLabel
 -attachControl $goButton “left” $margin $heightField
 $form;

 showWindow $winName;
 window -e -widthHeight $winW $winH $winName;
}

proc createCleanSquareCmd(fl oat $w, fl oat $h)

93

{
 string $curve = `curve -d 1
 -p $w 0 $h
 -p $w 0 0
 -p 0 0 0
 -p 0 0 $h
 -k 0 -k 1 -k 2 -k 3`;

 closeCurve -rpo 1 $curve;
}

createCleanSquare();

94

G|05. createCurveFromPolygonVerts()

proc createCurveFromPolygonCVs()
{
 string $selection[] = `ls -sl -fl ̀ ;

 vector $vec[];

 int $i;
 for($i=0; $i<size($selection); $i++)
 {
 fl oat $pos[] = `pointPosition $selection[$i]`;
 $vec[$i] = <<$pos[0], $pos[1], $pos[2]>>;
 }

 print(createCurveFromPointData($vec));
}

proc string createCurveFromPointData(vector $p[])
{
 string $cmd = “curve -d 1 “;

 int $i;
 for($i=0; $i<size($p); $i++)
 {
 fl oat $tmp[] = $p[$i];
 $cmd = $cmd +”-p “+ $tmp[0] +” “+ $tmp[1] +” “+ $tmp[2] +” “;
 }

 string $crv = `eval $cmd`;
 closeCurve -ch 1 -rpo 1 -p 0.1 $crv;
 select($crv);
 return($crv);
}

95

G|06. createStairs()

proc generateStair()
{
 // INPUT
 fl oat $rise = .475;
 fl oat $run = .65;
 fl oat $width = 3;
 int $nSteps = 6;

 // LOCAL
 int $i;
 int $nPoints = ($nSteps*2)+1;
 fl oat $x, $y, $z;
 string $cmd = “curve -d 1 “;

 // add points to command to generate steps
 for($i=0; $i<$nPoints; $i++)
 {
 $x = 0;
 $y = $rise * (($i+1)/2);
 $z = $run * (($i+0)/2);

 $cmd = $cmd +”-p “+ $x +” “+ $y +” “+ $z +” “;
 }

 // Close off the bottom
 $cmd = $cmd +”-p “+ $x +” “+ ($y-$rise) +” “+ $z +” “;
 $cmd = $cmd +”-p “+ 0 +” “+ 0 +” “+ $run +” “;

 // Add knot value fl ags to command
 for($i=0; $i<$nPoints+2; $i++)
 $cmd = $cmd +”-k “+ $i +” “;

 // Create curve
 string $curveName = `eval($cmd)`;
 closeCurve -ch 0 -ps 1 -rpo 1 -bb 0.5 -bki 0 -p 0.1 $curveName;

96

 nurbsToPolygonsPref -f 0 -pt 1 -pc 1;
 string $surfName[] = `planarSrf -ch 1 -d 3 -ko 0 -tol 0.00393701
 -rn 0 -po 1 -n “stair1” $curveName`;
 polyExtrudeFacet
 -ch 1 -kft 0
 -tx 0 -ty 0 -tz 0 -rx 0 -ry 0 -rz 0 -sx 1 -sy 1 -sz 1
 -ran 0 -divisions 1 -twist 0 -taper 1 -off 0 -w 0 -ws 0
 -ltz $width -ltx 0 -lty 0 -lrx 0 -lry 0 -lrz 0
 -lsx 1 -lsy 1 -lsz 1 -ldx 1 -ldy 0 -ldz 0
 -gx 0 -gy -1 -gz 0 -att 0 -mx 0 -my 0 -mz 0
 ($surfName[0] + “.f[0]”);

 delete $curveName;
 select -cl;
}

generateStair();

97

G|07. createStairsFromCurves()

proc generateStairFromCurves()
{
 string $selection[] = `ls -sl`;

 fl oat $height = 100;
 int $stepCount = 150;
 fl oat $rise = $height/$stepCount;
 fl oat $run = (fl oat)1/$stepCount;

 fl oat $xyz[], $y;
 string $cmd;

 rebuildCurve -ch 1 -rpo 1 -rt 0 -end 1 -kr 0
 -kcp 0 -kep 1 -kt 0 -s 0 -d 3 -tol 0.00393701
 $selection[0];
 rebuildCurve -ch 1 -rpo 1 -rt 0 -end 1 -kr 0
 -kcp 0 -kep 1 -kt 0 -s 0 -d 3 -tol 0.00393701
 $selection[1];

 $cmd = “curve -d 1 “;
 int $i;
 for($i=0; $i<$stepCount; $i++)
 {
 $xyz = `pointPosition -w ($selection[0] + “.u[“ + $i*$run + “]”)`;
 $y = $i * $rise;
 $cmd = $cmd +”-p “+ $xyz[0] +” “+ $y +” “+ $xyz[2] + “ “;
 if($i != $stepCount-1)
 $cmd = $cmd +”-p “+ $xyz[0] +” “+ ($y+$rise) +” “+ $xyz[2] + “ “;
 }
 for($i=0; $i<($stepCount*2)-1; $i++)
 $cmd = $cmd +”-k “+ $i +” “;
 string $curve1 = `eval($cmd)`;

 $cmd = “curve -d 1 “;
 for($i=0; $i<$stepCount; $i++)
 {

98

 $xyz = `pointPosition -w ($selection[1] + “.u[“ + $i*$run + “]”)`;
 $y = $i * $rise;
 $cmd = $cmd +”-p “+ $xyz[0] +” “+ $y +” “+ $xyz[2] + “ “;
 if($i != $stepCount-1)
 $cmd = $cmd +”-p “+ $xyz[0] +” “+ ($y+$rise) +” “+ $xyz[2] + “ “;
 }
 for($i=0; $i<($stepCount*2)-1; $i++)
 $cmd = $cmd +”-k “+ $i +” “;
 string $curve2 = `eval($cmd)`;

 loft -ch 1 -u 1 -c 0 -ar 1 -d 3
 -ss 1 -rn 0 -po 0 -rsn true
 $curve1 $curve2;

}

generateStairFromCurves();

99

G|08. extractIsoparms()

proc extractIsoparms()
{
 string $selectedSurfs[] = `selectedNodes`;

 int $i;
 for($i=0; $i<size($selectedSurfs); $i++)
 {
 string $rebuildName = (“rebuild” + $i);

 rebuildSurface -name $rebuildName
 -ch 1 -rpo 0 -rt 0 -end 1 -kr 0 -kcp 0
 -kc 1 -su 4 -du 3 -sv 7 -dv 3
 -tol 0.00393701 -fr 0 -dir 2
 $selectedSurfs[$i];

 duplicateCurve -name ($rebuildName + “isoparm1”) ($rebuildName + “.u[0]”);
 duplicateCurve -name ($rebuildName + “isoparm2”) ($rebuildName + “.u[.25]”);
 duplicateCurve -name ($rebuildName + “isoparm3”) ($rebuildName + “.u[.5]”);
 duplicateCurve -name ($rebuildName + “isoparm4”) ($rebuildName + “.u[.75]”);
 duplicateCurve -name ($rebuildName + “isoparm5”) ($rebuildName + “.u[1]”);

 group -name (“isoparmGroup” + $i)
 ($rebuildName + “isoparm1”)
 ($rebuildName + “isoparm2”)
 ($rebuildName + “isoparm3”)
 ($rebuildName + “isoparm4”)
 ($rebuildName + “isoparm5”);

 delete $rebuildName;
 }
}

extractIsoparms();

100

G|09. extrudePolyline()

proc test()
{
 string $selected[] = `ls -sl`;
 for($i=0; $i<size($selected); $i++)
 {
 planarSrf -n ($selected[$i] + “_” + $i) -ch 0 -d 1 -ko 0 -tol 0.01 -rn 0 -po 1
$selected[$i];
 polyExtrudeFacet -ch 1 -kft 0 -pvx 324.2387426 -pvy 358.7226447 -pvz 621.8901867
 -tx 0 -ty 0 -tz 0
 -rx 0 -ry 0 -rz 0
 -sx 1 -sy 1 -sz 1
 -ran 0 -divisions 1 -twist 0 -taper 1 -off 0
 -ltz -30 -ws 0 -ltx 0 -lty 0 -lrx 0 -lry 0 -lrz 0
 -lsx 1 -lsy 1 -lsz 1 -ldx 1 -ldy 0 -ldz 0 -w 0 -gx 0 -gy -1 -gz 0
 -att 0 -mx 0 -my 0 -mz 0 ($selected[$i]+”_”+$i+”.f[0]”);
 }
}

test();

101

G|10. fl attenCVs()

proc fl attenCVs()
{
 string $selectedCVs[] = `ls -sl -fl ̀ ;

 int $i;
 for($i=0; $i<size($selectedCVs); $i++)
 {
 fl oat $pos[] = `getAttr $selectedCVs[$i]`;
 setAttr $selectedCVs[$i] $pos[0] 0 $pos[2];
 }
}

fl attenCVs();

102

G|11. fl attenNURBS()

// Flattens NURBS planes by moving CVs along $axis

proc check(string $theName)
{
 string $theName;
 if (`window -exists $theName`)
 deleteUI $theName;
}

proc fl attenNURBSInterface()
{
 string $winName = “Flatten_NURBS”;
 check($winName);
 window -widthHeight 210 50 $winName;

 string $form = `formLayout -numberOfDivisions 100`;
 string $axis = `optionMenu axisOption`;
 menuItem -label “Y”;
 menuItem -label “X”;
 menuItem -label “Z”;
 string $val = `fl oatField -ann “Value” valFloat`;
 string $button = `button -label “Flatten”
 -command (“fl attenNURBS(`optionMenu -q -v axisOption`, `fl oatField -q -v valFloat`);”)`;

 int $margin = 5;
 formLayout -edit
 -attachForm $axis “left” $margin
 -attachControl $val “left” $margin $axis
 -attachControl $button “left” $margin $val
 $form;

 showWindow $winName;
}

proc fl attenNURBS(string $axis, fl oat $value)
{

103

 string $selection[] = `selectedNodes`;
 int $cvcnt[] = `getAttr ($selection[0] + “.spansUV”)`;
 fl oat $pos[];

 int $u, $v;
 for($u=0; $u<=$cvcnt[0]+2; $u++)
 for($v=0; $v<=$cvcnt[1]+2; $v++)
 {
 fl oat $pos[] = `getAttr ($selection[0] + “.cv[“+ $u +”][“+ $v +”]”)`;
 fl oat $newPos[] = createPositionArray($axis, $value, $pos);

 setAttr ($selection[0] + “.cv[“+ $u +”][“+ $v +”]”)
 $newPos[0] $newPos[1] $newPos[2];
 }
}

proc fl oat[] createPositionArray(string $axis, fl oat $value, fl oat $pos[])
{
 if($axis == “x” || $axis == “X”)
 return {$value, $pos[1], $pos[2]};
 else if($axis == “y” || $axis == “Y”)
 return {$pos[0], $value, $pos[2]};
 else if($axis == “z” || $axis == “Z”)
 return {$pos[0], $pos[1], $value};
 else
 return {0, 0, 0};
}

fl attenNURBSInterface();

104

G|12. insertIsoparmAt()

proc insertParms(fl oat $loc)
{
 int $i;
 for($i=25; $i<=32; $i++)
 {
 insertKnotSurface -ch 1 -nk 1 -add 1 -ib 0 -rpo 1
 (“original_full_strip_rebuilt1detachedSurface” +$i +”.v[$loc]”);
 }
}

insertParms(0.401);

105

G|13. makeLocatorsRenderable()

proc makeLocatorsRenderable()
{
 string $sel[] = `ls -sl`;
 fl oat $size = 20;
 fl oat $thickness = .5;

 int $i;
 for($i=0; $i<size($sel); $i++)
 {
 vector $xyz = `getAttr ($sel[$i] + “.translate”)`;

 string $c1[] = `polyCube -w $thickness -h $thickness -d $size`;
 string $c2[] = `polyCube -w $thickness -h $size -d $thickness`;
 string $c3[] = `polyCube -w $size -h $thickness -d $thickness`;

 string $b1[] = `polyBoolOp -op 1 -ch 0 $c1[0] $c2[0]`;
 string $b2[] = `polyBoolOp -op 1 -ch 0 $b1[0] $c3[0]`;

 move ($xyz.x) ($xyz.y) ($xyz.z) $b2[0];
 }
}

makeLocatorsRenderable();

106

G|14. moveCurvePivot()

proc moveCurvePivot()
{
 string $obj[] = `ls -sl -fl ̀ ;
 string $objType = `objectType $obj[0]`;

 // Selection Check
 if(size($obj)>1)
 error “Select *ONE* CV on a NURBS curve or surface!”;

 else if($objType == “nurbsCurve” || $objType == “nurbsSurface”)
 {
 string $shape[] = `listRelatives -ap $obj[0]`;
 string $nurbs[] = `listTransforms $shape[0]`;
 string $crv = $nurbs[0];

 fl oat $xyz[] = `pointPosition -w $obj`;
 move -a $xyz[0] $xyz[1] $xyz[2] ($crv + “.scalePivot”) ($crv + “.rotatePivot”);

 select $crv;
 }

 else
 error “moveCurvePivot: Selection error!”;
}

moveCurvePivot();

107

G|15. relativeMove()

proc relativeMove(fl oat $x, fl oat $y, fl oat $z, string $units)
{
 fl oat $factor;

 if($units == “inches”)
 $factor = 0.08333333;
 else if($units == “feet”)
 $factor = 1.0;
 else if($units == “meters”)
 $factor = 3.2808399;

 move -r ($x*$factor) ($y*$factor) ($z*$factor);
}

proc callMoveWindow()
{
 fl oat $xyz[3] = {0, 0, 0};

 string $winName = “Relative_Move”;
 window $winName;

 string $form = `formLayout -numberOfDivisions 100`;
 string $inputField = `fl oatFieldGrp -numberOfFields 3
 -cc “$xyz = `fl oatFieldGrp -q -v input`;” input`;
 string $inchOKbutton = `button -label “move inches”
 -command (“relativeMove($xyz[0], $xyz[1], $xyz[2], \”inches\”);”)`;
 string $feetOKbutton = `button -label “move feet”
 -command (“relativeMove($xyz[0], $xyz[1], $xyz[2], \”feet\”);”)`;
 string $meterOKbutton = `button -label “move meters”
 -command (“relativeMove($xyz[0], $xyz[1], $xyz[2], \”meters\”);”)`;
 string $warning = `text -label “*** Assumes 1.0 Maya units = 1’-0\””`;

 int $margin = 5;
 formLayout -edit
 -attachForm $inputField “left” $margin
 -attachControl $inchOKbutton “top” $margin $inputField

108

 -attachControl $feetOKbutton “left” $margin $inchOKbutton
 -attachControl $feetOKbutton “top” $margin $inputField
 -attachControl $meterOKbutton “left” $margin $feetOKbutton
 -attachControl $meterOKbutton “top” $margin $inputField
 -attachForm $warning “bottom” $margin
 $form;

 window -e -widthHeight 350 110 $winName;
 showWindow $winName;
}

G|16. showHiddenChildren()

proc showHiddenChildren()
{
 string $sel[] = `ls -sl`;

 int $i;
 for($i=0; $i<size($sel); $i++)
 {
 showHidden -b $sel[$i];
 }
}

showHiddenChildren();

109

G|17. thickenSurfaces()

// Thickens selected NURBS surface.

proc thickenSelectedSurfs()
{
 // $n => number to start naming things with
 // $thickness

 fl oat $thickness = 0.4;
 int $n = 1;
 string $surface[] = `selectedNodes`;

 int $i;
 for($i=0; $i<size($surface); $i++)
 {
 int $uvcnt[] = `getAttr loftedSurface2attachedSurfaceShape1.spansUV`;

 offsetSurface -ch on -m 0 -d $thickness -n (“surf”+($n+$i)+”_1”) $surface[$i];
 loft -ch 1 -u 1 -c 0 -ar 1 -d 3 -ss 1 -rn 0 -po 0 -n (“lft”+($n+$i)+”_1”)
 ($surface[$i]+”.u[0]”) ((“surf”+($n+$i)+”_1”)+”.u[0]”);
 loft -ch 1 -u 1 -c 0 -ar 1 -d 3 -ss 1 -rn 0 -po 0 -n (“lft”+($n+$i)+”_2”)
 ($surface[$i]+”.u[“+$uvcnt[0]+”]”) ((“surf”+($n+$i)+”_1”)+”.u[“+$uvcnt[0]+”]”);
 loft -ch 1 -u 1 -c 0 -ar 1 -d 3 -ss 1 -rn 0 -po 0 -n (“lft”+($n+$i)+”_3”)
 ($surface[$i]+”.v[0]”) ((“surf”+($n+$i)+”_1”)+”.v[0]”);
 loft -ch 1 -u 1 -c 0 -ar 1 -d 3 -ss 1 -rn 0 -po 0 -n (“lft”+($n+$i)+”_4”)
 ($surface[$i]+”.v[“+$uvcnt[1]+”]”) ((“surf”+($n+$i)+”_1”)+”.v[“+$uvcnt[1]+”]”);

 group -n (“group”+($n+$i))
 $surface[$i]
 (“surf”+($n+$i)+”_1”)
 (“lft”+($n+$i)+”_1”)
 (“lft”+($n+$i)+”_2”)
 (“lft”+($n+$i)+”_3”)
 (“lft”+($n+$i)+”_4”);
 }
}

110

ii. Automation

A|01. booleanMulti()

proc booleanMulti()
{
 // Selection Breakdown
 string $selection[] = `ls -sl -fl ̀ ;
 string $knife = $selection[size($selection)-1];

 // Variables inside loop
 int $i;
 string $fi rstParent;
 string $newKnife[], $boolResult[];

 for($i=0; $i<size($selection)-1; $i++)
 {
 // Remember parent of each object
 $fi rstParent = fi rstParentOf($selection[$i]);

 // Make a copy of the knife
 $newKnife = `duplicate -rr $knife`;

 // Subtract and store name, parent with original parent
 $boolResult = `polyBoolOp -op 2 -ch 0 $selection[$i] $newKnife[0]`;
 parent $boolResult $fi rstParent;
 }
}

booleanMulti();

111

A|02. createMullions()

proc createMullions()
{
 // Input Variables
 int $nMullions = 80;
 int $startAt = 20;
 int $endAt = 70;
 string $profi leName = “mullion_profi le”;

 // Local Variables
 fl oat $interval = 1/(fl oat)$nMullions;

 // Selection breakdown
 string $selection[] = `ls -sl -fl ̀ ;

 // Variables set inside loop
 string $obj;
 string $grp;

 int $i, $j;
 for($i=0; $i<size($selection); $i++)
 {
 $obj = $selection[$i];
 $grp = `group -em -n “mullions1”`;

 for($j=$startAt; $j<$endAt; $j++)
 {
 string $mull[] = `extrude -ch true -rn false -po 0 -et 2 -ucp 1
 -fpt 1 -upn 1 -rotation 0 -scale 1 -rsp 1
 $profi leName ($obj + “.v[“ + ($j*$interval) + “]”)`;
 parent $mull[0] $grp;
 }
 }

 select -cl;
}

createMullions();

112

A|03. extrudeProfi leOnSelectedCurves()

proc extrudeProfi leOnSelectedCurves()
{
 string $profi le = “structureDiags5x5”;
 string $sel[] = `ls -sl -fl ̀ ;

 int $i;
 for($i=0; $i<size($sel); $i++)
 {
 nurbsToPolygonsPref -f 0 -pt 1 -pc 1;

 polyCloseBorder `extrude -ch 0 -rn false -po 1 -et 2 -ucp 1 -fpt 1
 -upn 1 -rotation 0 -scale 1 -rsp 1
 $profi le $sel[$i]`;
 }
}

A|04. extrudeProfi leOnSelectedIsoparms()

proc extrudeProfi leOnSelectedIsoparms()
{
 string $profi le = “truss_span_profi le1”;
 string $sel[] = `ls -sl -fl ̀ ;

 int $i;
 for($i=0; $i<size($sel); $i++)
 {
 extrude -ch true -rn false -po 0 -et 2 -ucp 1 -fpt 1
 -upn 1 -rotation 0 -scale 1 -rsp 1
 $profi le $sel[$i];
 }
}

113

A|05. fi xIsoparms()

proc test()
{
 string $s[] = `ls -sl`;

 int $i;
 for($i=0; $i<size($s); $i++)
 {
 insertKnotSurface -ch 1 -nk 1 -add 1 -ib 0 -d 0 -rpo 1
 -p 0.42992 -p 0.45995 -p 0.47998 $s[$i];
 }
}

A|06. generateLinesFromStrips()

proc generateLinesFromStrips()
{
 string $sel[] = `ls -sl -fl ̀ ;

 fl oat $startAt = 0.375;
 fl oat $inc = 0.0625;
 int $count = 9;

 int $i, $j;
 for($i=0; $i<size($sel); $i++)
 {
 for($j=0; $j<$count; $j++)
 {
 fl oat $v = $startAt + $j*$inc;
 duplicateCurve -ch 1 -rn 0 -local 0 ($sel[$i] +”.v[“+ $v +”]”);
 }
 }
}

114

A|07. makeColumns()

proc test()
{
 string $selected[];
 string $obj;
 fl oat $epxyz[];

 $selected = `ls -sl`;
 $obj = $selected[0];
 $epxyz1 = `pointPosition ($obj + “.cv[0][3]”)`;
 $epxyz2 = `pointPosition ($obj + “.cv[4][3]”)`;
 $epxyz3 = `pointPosition ($obj + “.cv[14][3]”)`;
 $epxyz4 = `pointPosition ($obj + “.cv[18][3]”)`;

 string $c1 = `curve -d 1 -k 0 -k 1
 -p $epxyz1[0] $epxyz1[1] $epxyz1[2]
 -p $epxyz1[0] 0 $epxyz1[2]`;
 string $c2 = `curve -d 1 -k 0 -k 1
 -p $epxyz2[0] $epxyz2[1] $epxyz2[2]
 -p $epxyz2[0] 0 $epxyz2[2]`;
 string $c3 = `curve -d 1 -k 0 -k 1
 -p $epxyz3[0] $epxyz3[1] $epxyz3[2]
 -p $epxyz3[0] 0 $epxyz3[2]`;
 string $c4 = `curve -d 1 -k 0 -k 1
 -p $epxyz4[0] $epxyz4[1] $epxyz4[2]
 -p $epxyz4[0] 0 $epxyz4[2]`;

 extrude -ch true -rn false -po 0 -et 2 -ucp 1
 -fpt 1 -upn 1 -rotation 0 -scale 1 -rsp 1
 “column_profi le_01”
 $c1 ;
 extrude -ch true -rn false -po 0 -et 2 -ucp 1
 -fpt 1 -upn 1 -rotation 0 -scale 1 -rsp 1
 “column_profi le_01”
 $c2 ;
 extrude -ch true -rn false -po 0 -et 2 -ucp 1
 -fpt 1 -upn 1 -rotation 0 -scale 1 -rsp 1
 “column_profi le_01”

115

 $c3 ;
 extrude -ch true -rn false -po 0 -et 2 -ucp 1
 -fpt 1 -upn 1 -rotation 0 -scale 1 -rsp 1
 “column_profi le_01”
 $c4 ;

 select -cl;
}

A|08. sawToothLines()

proc sawToothLines()
{
 string $sel[] = `ls -sl -fl ̀ ;

 int $i;
 for($i=0; $i<size($sel)-1; $i++)
 {
 fl oat $p1[], $p2[];
 fl oat $p1a[] = `pointPosition -w ($sel[$i] +”.cv[0]”)`;
 fl oat $p1b[] = `pointPosition -w ($sel[$i] +”.cv[3]”)`;
 fl oat $p2a[] = `pointPosition -w ($sel[$i+1] +”.cv[0]”)`;
 fl oat $p2b[] = `pointPosition -w ($sel[$i+1] +”.cv[3]”)`;

 if($p1a[1] > $p1b[1]) $p1 = $p1a; else $p1 = $p1b;
 if($p2a[1] < $p2b[1]) $p2 = $p2a; else $p2 = $p2b;

 string $curve = `curve -d 1
 -p $p1[0] $p1[1] $p1[2]
 -p $p2[0] $p2[1] $p2[2]
 -k 0 -k 1`;

 }
}

116

iii. Relationships

R|01. attachToSurfaceWithGeoConstraint()

proc test()
{
 int $cvcnt[] = `getAttr baseShape.spansUV`;
 fl oat $epxyz[];

 int $u, $v;
 for($u=0; $u<=$cvcnt[0]+2; $u++)
 {
 for($v=0; $v<=$cvcnt[1]+2; $v++)
 {
 int $unitNum = ($u*($cvcnt[0]+3) + $v) + 1;

 $epxyz = `pointPosition base.cv[$u][$v]`;
 duplicate -n (“unit”+ $unitNum) unit0;

 setAttr (“unit”+ $unitNum +”.translateX”) $epxyz[0];
 setAttr (“unit”+ $unitNum +”.translateY”) $epxyz[1];
 setAttr (“unit”+ $unitNum +”.translateZ”) $epxyz[2];

 geometryConstraint -weight 1 base (“unit”+ $unitNum);
 }
 }
}

117

R|02. createLinearNodeConnection()

proc createLinearNodeConnection()
{
 string $profi leCurve = “link_profi le”;
 string $curveGrp = “links|curves”;
 string $surfGrp = “links|surfs”;

 string $sel[] = `ls -sl`;

 string $curve = `curve -d 1 -p 0 0 0 -p 1 1 1 -k 0 -k 1 -n (“Link” +”_”+ $sel[0] +”_”+
$sel[1])`;
 string $curveShape[] = `listRelatives -s $curve`;

 connectAttr -f ($sel[0] + “.translate”) ($curveShape[0] + “.controlPoints[0]”);
 connectAttr -f ($sel[1] + “.translate”) ($curveShape[0] + “.controlPoints[1]”);

 string $surf[];
 if($profi leCurve != “”)
 $surf = `extrude -ch true -rn false -po 0 -et 2
 -ucp 1 -fpt 1 -upn 1 -rotation 0 -scale 1 -rsp 1
 $profi leCurve $curve`;

 if($curveGrp != “”)
 parent $curve $curveGrp;
 if($profi leCurve != “”)
 parent $surf[0] $surfGrp;
}

createLinearNodeConnection();

118

R|03. driveCVs()

proc driveCVs()
{
 string $sel[] = `ls -sl -fl ̀ ;
 string $cv1 = $sel[1];
 string $cv2 = $sel[2];
 string $cv3 = $sel[3];
 string $cv4 = $sel[4];

 string $surfShape[] = `listRelatives -ap $sel[0]`;
 string $cp1[] = `listAttr $sel[1]`;
 string $cp2[] = `listAttr $sel[2]`;
 string $cp3[] = `listAttr $sel[3]`;
 string $cp4[] = `listAttr $sel[4]`;

 connectAttr -f ($sel[0] + “.translateY”) ($surfShape[0] +”.”+ $cp1[0] +”.yValue”);
 connectAttr -f ($sel[0] + “.translateY”) ($surfShape[0] +”.”+ $cp2[0] +”.yValue”);
 connectAttr -f ($sel[0] + “.translateY”) ($surfShape[0] +”.”+ $cp3[0] +”.yValue”);
 connectAttr -f ($sel[0] + “.translateY”) ($surfShape[0] +”.”+ $cp4[0] +”.yValue”);
}

driveCVs();

119

Expression: nodeHeightByProximity()

proc fl oat nodeHeightByProximity(vector $thisXYZ)
{
 string $locs[] = `listRelatives -c “nodes”`;
 int $i;
 for($i=0; $i<size($locs); $i++)
 {
 fl oat $x = `getAttr ($locs[$i] +”.translateX”)`;
 fl oat $y = `getAttr ($locs[$i] +”.translateY”)`;
 fl oat $z = `getAttr ($locs[$i] +”.translateZ”)`;
 fl oat $inf[] = `getAttr ($locs[$i] +”.infl uence”)`;
 vector $locXYZ = <<$x, $y, $z>>;
 vector $dist = abs($thisXYZ - $locXYZ);
 if($dist.x < ($inf[0]*5) && $dist.z < ($inf[2]*5))
 return $inf[1]*10;
 }
 return 0;
}

proc checkNodes()
{
 string $nodes[] = `listRelatives -c “driverGroup”`;
 int $i;
 for($i=0; $i<size($nodes); $i++)
 {
 fl oat $x = `getAttr ($nodes[$i] +”.translateX”)`;
 fl oat $y = `getAttr ($nodes[$i] +”.translateY”)`;
 fl oat $z = `getAttr ($nodes[$i] +”.translateZ”)`;

 setAttr ($nodes[$i] +”.translateY”) (nodeHeightByProximity(<<$x, $y, $z>>));
 }
}

checkNodes();

120

iv. Behavioral

B|01. createPoolRoof()

proc createRoof()
{
 vector $poolExtents1 = `getAttr poolExtents1.translate`;
 vector $poolExtents2 = `getAttr poolExtents2.translate`;
 vector $deckW = `getAttr deckW.translate`;
 vector $deckE = `getAttr deckE.translate`;
 vector $roofHeightLocator = `getAttr roofHeight.translate`;
 vector $trussDepthLocator = `getAttr trussDepth.translate`;

 global int $nSpans, $nTrussSpansPerColumn, $nWebSpans;
 global fl oat $spanFluctuation, $steelTensileStressPSI;
 fl oat $roofLoadPSF;

 $roofLoadPSF = 30.0;
 $steelTensileStressPSI = 20000;
 $nSpans = 10;
 $nTrussSpansPerColumn = 3;
 $spanFluctuation = 6.0;
 $nWebSpans = 8;

 global fl oat $roofHeight, $trussDepth, $poolWidth, $poolDepth;
 fl oat $poolSurfaceArea, $deckWidthW, $deckWidthE;

121

 $roofHeight = ($roofHeightLocator.y);
 $trussDepth = ($roofHeight - $trussDepthLocator.y);
 $poolWidth = $poolExtents2.x - $poolExtents1.x;
 $poolDepth = $poolExtents2.z - $poolExtents1.z;

 $poolSurfaceArea = $poolWidth * $poolDepth;
 $deckWidthW = $deckW.x - $poolExtents2.x;
 $deckWidthE = $poolExtents1.x - $deckE.x;

 global fl oat $columnSpacing, $trussSpacing, $loadPerTruss, $maxTrussMoment;
 global int $nTruss;
 fl oat $columnLocations[];
 fl oat $loadPerColumnPair, $maxTrussMoment;

 $columnSpacing = $poolDepth / $nSpans;
 $nTruss = $nSpans * $nTrussSpansPerColumn + 1;
 $trussSpacing = $columnSpacing / $nTrussSpansPerColumn;
 $loadPerColumnPair = $poolSurfaceArea*$roofLoadPSF / $nSpans;
 $loadPerTruss = $loadPerColumnPair / $nTrussSpansPerColumn;
 $maxTrussMoment = getMaxMoment($nWebSpans, $poolWidth, $loadPerTruss);

 // == //
 print(“\n”
 + “____LOADS_____________________________” + “\n”
 + “Roof load (PSF) “ + $roofLoadPSF + “\n”
 + “Steel Tensile Stress (PSI) “ + $steelTensileStressPSI + “\n”
 + “Load/column pair (lb) “ + $loadPerColumnPair + “\n”
 + “Load/truss (lb) “ + $loadPerTruss + “\n”
 + “Max truss moment (lb-ft) “ + $maxTrussMoment + “\n”
 + “____DIMENSIONS________________________” + “\n”
 + “Roof height max (ft) “ + $roofHeight + “\n”
 + “Pool Width (ft) “ + $poolWidth + “\n”
 + “Pool Depth (ft) “ + $poolDepth + “\n”
 + “____MEMBERS___________________________” + “\n”
 + “Fluctuation (ft) “ + $spanFluctuation + “\n”
 + “Column spans “ + $nSpans + “\n”
 + “Column spacing (ft) “ + $columnSpacing + “\n”
 + “Truss’ per Column span “ + $nTrussSpansPerColumn + “\n”
 + “Truss count “ + $nTruss + “\n”

122

 + “Truss spacing (ft) “ + $trussSpacing + “\n”
 + “Truss depth (ft) “ + $trussDepth + “\n”
);

 // == //
 for($i=0; $i<=$nSpans; $i++)
 {
 $columnLocations[$i] = $i*$columnSpacing;
 createColumn((“columnA”+$i), 0, $deckE.x, getColumnHeight($i), $columnLocations[$i]);
 createColumn((“columnB”+$i), 0, 0, getColumnHeight($i), $columnLocations[$i]);
 createColumn((“columnC”+$i), 0, $poolWidth, getColumnHeight($i), $columnLocations[$i]);
 createColumn((“columnD”+$i), 0, $deckW.x, getColumnHeight($i), $columnLocations[$i]);
 }

 createBeam(“BeamA”, $deckE.x);
 createBeam(“BeamB”, $poolExtents1.x);
 createBeam(“BeamC”, $poolExtents2.x);
 createBeam(“BeamD”, $deckW.x);

 sizeTrussMembers();
 for($i=0; $i<$nTruss; $i++)
 createTruss((“truss” + $i), getTrussHeight($i), ($i * $trussSpacing));

 group -n “Columns” `getAllObjectsStartingWith(“column”)`;
 group -n “Beam” `getAllObjectsStartingWith(“Beam”)`;
 group -n “Trusses” `getAllObjectsStartingWith(“trussGroup_”)`;

 select -cl;
}

proc sizeTrussMembers()
{
 global fl oat $maxTrussMoment, $trussDepth, $steelTensileStressPSI;
 fl oat $areaIN2 = $maxTrussMoment/$trussDepth/$steelTensileStressPSI;
 fl oat $radiusIN = sqrt($areaIN2 / 3.1415927);

// setAttr makeChordProfi le.radius (0.1 * $radiusIN); // doesn’t work if expression is already de-
fi ned ..
// setAttr makeWebProfi le.radius (0.1 * ($radiusIN*.5));

123

}

proc createColumn(string $name, fl oat $load, fl oat $x, fl oat $y, fl oat $z)
{
 // !!! size according to $load !!!

 global fl oat $roofHeight;
 polyCube -n $name -w 1.0 -h $y -d 2.0;
 move $x ($y/2) $z $name;
}

proc createBeam(string $name, fl oat $x)
{
 global fl oat $roofHeight, $spanFluctuation, $columnSpacing, $poolDepth;
 global int $nSpans;

 for($i=0; $i<$nSpans; $i++)
 buildBeamMember(($name+”_seg”+$i), <<$x, getColumnHeight($i), $i*$columnSpacing>>, <<$x,
getColumnHeight($i+1), ($i+1)*$columnSpacing>>);
}

proc fl oat getColumnHeight(int $i)
{
 global fl oat $roofHeight, $spanFluctuation;
 if($i%2 == 0) return $roofHeight;
 else return ($roofHeight - $spanFluctuation);
}

proc fl oat getTrussHeight(int $n)
{
 global fl oat $roofHeight, $trussDepth, $spanFluctuation;
 global int $nTruss, $nTrussSpansPerColumn;
 fl oat $stepSize = $spanFluctuation/$nTrussSpansPerColumn;
 return ($roofHeight - $stepSize * abs(($n+$nTrussSpansPerColumn)%($nTrussSpansPerColumn*2)-
$nTrussSpansPerColumn));
}

proc buildBeamMember(string $name, vector $p1, vector $p2)
{

124

 curve -d 1 -p ($p1.x) ($p1.y) ($p1.z)
 -p ($p2.x) ($p2.y) ($p2.z)
 -k 0 -k 1 -n $name;

 extrude -ch true -rn false -po 0 -et 2 -ucp 1 -fpt 1 -upn 1
 -rotation 0 -scale 1 -rsp 1
 -n ($name + “_loft”)
 “beamProfi le” $name;
}

proc fl oat getMaxMoment(fl oat $nWebSpans, fl oat $poolWidth, fl oat $loadPerTruss)
{
 fl oat $maxMoment = 0;
 fl oat $loadIncrement = ($loadPerTruss/2) / $nWebSpans;
 for($i=0; $i<$nWebSpans/2; $i++)
 $maxMoment += (($poolWidth/$nWebSpans) * ($loadPerTruss - ($i*$loadIncrement)));
 return $maxMoment;
}

proc createTruss(string $name, fl oat $y, fl oat $z)
{
 global fl oat $poolWidth, $maxTrussMoment, $trussDepth;
 global int $nWebSpans;
 fl oat $webSpan = $poolWidth/$nWebSpans;

 buildTrussMember(($name+”_upperChord”), <<0, $y, $z>>, <<$poolWidth, $y, $z>>);

 vector $this = <<0.0, $y, $z>>;

 int $c = 2;
 for($i=1; $i<=$nWebSpans/2; $i++)
 {
 vector $next = <<($i*$webSpan), ($y-($trussDepth*($c-1)/$c)), $z>>;
 $c += $c;

 // LOWER CHORD
 buildTrussMember(($name+”_web_lowerChord_”+$i+”a”), <<$this.x, $this.y, $this.z>>,
<<$next.x, $next.y, $next.z>>);
 buildTrussMember(($name+”_web_lowerChord_”+$i+”b”), <<($poolWidth-($this.x)), $this.y,

125

$this.z>>, <<($poolWidth-($next.x)), $next.y, $next.z>>);

 // VERTICALS
 buildTrussMember(($name+”_web_vertical_”+$i+”a”), <<$next.x, $y, $this.z>>, <<$next.x,
$next.y, $next.z>>);
 buildTrussMember(($name+”_web_vertical_”+$i+”b”), <<($poolWidth-($next.x)), $y, $this.z>>,
<<($poolWidth-($next.x)), $next.y, $next.z>>);

 // DIAGONALS
 buildTrussMember(($name+”_web_diagonal_”+$i+”a”), <<(($i*$webSpan)-$webSpan/2), $y, $this.
z>>, <<$next.x, $next.y, $next.z>>);
 buildTrussMember(($name+”_web_diagonal_”+$i+”b”), <<$this.x, $this.y, $this.z>>, <<((($i-
1)*$webSpan)+$webSpan/2), $y, $this.z>>);
 buildTrussMember(($name+”_web_diagonal_”+$i+”c”), <<($poolWidth - (($i*$webSpan)-$web-
Span/2)), $y, $this.z>>, <<($poolWidth - $next.x), $next.y, $next.z>>);
 buildTrussMember(($name+”_web_diagonal_”+$i+”d”), <<($poolWidth - $this.x), $this.y,
$this.z>>, <<($poolWidth - ((($i-1)*$webSpan)+$webSpan/2)), $y, $this.z>>);

 $this = <<($next.x), ($next.y), ($next.z)>>;
 }

 group -n (“trussGroup_”+$name) `getAllObjectsStartingWith($name)`;
}

proc buildTrussMember(string $name, vector $p1, vector $p2)
{
 string $profi le;
 if(gmatch($name, “*Chord*”))
 $profi le = “chordProfi le”;
 else
 $profi le = “webProfi le”;

 curve -d 1 -p ($p1.x) ($p1.y) ($p1.z)
 -p ($p2.x) ($p2.y) ($p2.z)
 -k 0 -k 1 -n $name;

 extrude -ch true -rn false -po 0 -et 2 -ucp 1 -fpt 1 -upn 1
 -rotation 0 -scale 1 -rsp 1
 -n ($name + “_loft”)

126

 $profi le $name;
}

proc string[] getAllObjectsStartingWith(string $prefi x)
{
 string $selected[] = (`ls -type “transform” ($prefi x + “*”)`);
 return $selected;
}

createRoof();

Expression: updateTrussSystem()

/*proc adjustTruss(string $name, fl oat $y, fl oat $z)
{
 dummyPoint.translateY = trussDepth.translateY;

 global fl oat $roofHeight, $poolWidth, $maxTrussMoment;
 global int $nWebSpans;
 fl oat $webSpan = $poolWidth/$nWebSpans;
 fl oat $trussDepth = $roofHeight - (`getAttr trussDepth.translateY`);

 vector $this = <<0.0, $y, $z>>;
 vector $next;
 int $c = 2;

 for($i=1; $i<=$nWebSpans/2; $i++)
 {
 $next = <<($i*$webSpan), ($y - ($trussDepth*($c-1)/$c)), $z>>;
 $c += $c;

 // LOWER CHORD
 move -a ($this.x) ($this.y) ($this.z) ($name+”_web_lowerChord_”+$i+”a.cv[0]”);

127

 move -a ($next.x) ($next.y) ($next.z) ($name+”_web_lowerChord_”+$i+”a.cv[1]”);
 move -a ($poolWidth-($this.x)) ($this.y) ($this.z) ($name+”_web_lowerChord_”+$i+”b.
cv[0]”);
 move -a ($poolWidth-($next.x)) ($next.y) ($next.z) ($name+”_web_lowerChord_”+$i+”b.
cv[1]”);

 // VERTICALS
 move -a ($next.x) $y ($this.z) ($name+”_web_vertical_”+$i+”a.cv[0]”);
 move -a ($next.x) ($next.y) ($next.z) ($name+”_web_vertical_”+$i+”a.cv[1]”);
 move -a ($poolWidth-($next.x)) $y ($this.z) ($name+”_web_vertical_”+$i+”b.cv[0]”);
 move -a ($poolWidth-($next.x)) ($next.y) ($next.z) ($name+”_web_vertical_”+$i+”b.cv[1]”);

 // DIAGONALS
 move -a (($i*$webSpan)-$webSpan/2) $y ($this.z) ($name+”_web_diagonal_”+$i+”a.cv[0]”);
 move -a ($next.x) ($next.y) ($next.z) ($name+”_web_diagonal_”+$i+”a.cv[1]”);
 move -a ($this.x) ($this.y) ($this.z) ($name+”_web_diagonal_”+$i+”b.cv[0]”);
 move -a ((($i-1)*$webSpan)+$webSpan/2) $y ($this.z) ($name+”_web_diagonal_”+$i+”b.cv[1]”);
 move -a ($poolWidth - (($i*$webSpan)-$webSpan/2)) $y ($this.z) ($name+”_web_diagonal_
”+$i+”c.cv[0]”);
 move -a ($poolWidth - $next.x) ($next.y) ($next.z) ($name+”_web_diagonal_”+$i+”c.cv[1]”);
 move -a ($poolWidth - $this.x) ($this.y) ($this.z) ($name+”_web_diagonal_”+$i+”d.cv[0]”);
 move -a ($poolWidth - ((($i-1)*$webSpan)+$webSpan/2)) $y ($this.z) ($name+”_web_diagonal_
”+$i+”d.cv[1]”);

 $this = <<($next.x), ($next.y), ($next.z)>>;
 }
}

proc adjustMembers()
{
 global fl oat $roofHeight, $maxTrussMoment, $steelTensileStressPSI;
 fl oat $trussDepth = ($roofHeight - (`getAttr trussDepth.translateY`));
 fl oat $areaIN2 = $maxTrussMoment/$trussDepth/$steelTensileStressPSI;
 fl oat $radiusIN = sqrt($areaIN2 / 3.1415927);

 makeChordProfi le.radius = (0.2 * $radiusIN); // should be 0.1
 makeWebProfi le.radius = (0.2 * ($radiusIN*.5));
}

128

proc fl oat getTrussHeight(int $n)
{
 global fl oat $roofHeight, $trussDepth, $spanFluctuation;
 global int $nTruss, $nTrussSpansPerColumn;
 fl oat $stepSize = $spanFluctuation/$nTrussSpansPerColumn;
 return ($roofHeight - $stepSize * abs(($n+$nTrussSpansPerColumn)%($nTrussSpansPerColumn*2)-
$nTrussSpansPerColumn));
}

proc runAdjust()
{
 global int $nTruss;
 global fl oat $trussSpacing;

 for($i=0; $i<$nTruss; $i++)
 adjustTruss((“truss”+$i), getTrussHeight($i), ($trussSpacing * $i));

 adjustMembers();
}

runAdjust();*/

129

B|02. panelizeSurface()

proc panelizeSurface()
{
 // Input Variables
 int $ch = 0;
 int $makeBeams = 0;
 int $makeHoles = 1;
 int $makeHydro = 0;

 int $nSlabs = 160;
// int $startAt = 45;
// int $endAt = 46;
 int $startAt = 40;
 int $endAt = 60;

 fl oat $slabThickness = 0.5; // in feet [0.2]
 fl oat $slabGap = 0.0; // feet [0.0]
 fl oat $webDepth = 0.4; // feet [0.5]
 fl oat $webOffset = 0.4; // relative [0.15]
 fl oat $minHoleOffsetFromWeb = 0.25; // factor (relative) [0.3]
 fl oat $holeDistanceFromBeam = 0.75; // feet [1.0]
 fl oat $lightNodeEffect = 15.0; // feet [15.0]
/*
 fl oat $slabThickness = 0.40; // in feet [0.2]
 fl oat $slabGap = 0.0; // feet [0.0]
 fl oat $webDepth = 0.5; // feet [0.5]
 fl oat $webOffset = 0.15; // relative [0.15]
 fl oat $minHoleOffsetFromWeb = 0.25; // factor (relative) [0.3]
 fl oat $holeDistanceFromBeam = 0.75; // feet [1.0]
 fl oat $lightNodeEffect = 15.0; // feet [15.0]
*/
 // Local Variables
 fl oat $slabInc = 1/(fl oat)$nSlabs;
 fl oat $holeSizeRange = 0.499999 - $minHoleOffsetFromWeb;

 // Selection breakdown
 string $selection[] = `ls -sl -fl ̀ ;

130

 string $lightNodes[] = `listRelatives -c lightNodes`;

 // Variables inside loop
 string $panel[], $surfHistory[], $beams[], $beam1[], $beam2[], $holeKnife[];
 string $slabGrp, $slabSurface, $groupName, $beamGrp1, $beamGrp2;
 string $slabSurface;
 fl oat $distToLightNode;
 int $i, $j;

 for($i=0; $i<size($selection); $i++)
 {
 $slabSurface = $selection[$i];

 if($makeBeams)
 {
 $surfHistory = `listHistory -pdo 1 -f 1 -bf $selection[$i]`;
 string $extrudedBeams[] = reduceToObjectsOfType($surfHistory, “extrude”);
 $beam1 = `listConnections -sh 1 $extrudedBeams[0]`;
 $beam2 = `listConnections -sh 1 $extrudedBeams[1]`;

 $beamGrp1 = `group -em`;
 $beamGrp2 = `group -em`;
 }

 $groupName = `group -em -n “tSlabGroup1”`;
 $slabGrp = `group -em`;

 for($j=$startAt; $j<$endAt; $j++)
 {
 // SLAB
 $panel = createSlab($slabSurface, $j*$slabInc, ($j+1)*$slabInc, $slabThickness,
$ch);
 // WEBS
 createWebs($panel[0], $webOffset, $webDepth, $slabGap, $ch);
 // HOLES
 if($makeHoles) $panel = createHoles($panel, $slabSurface, $j, $slabInc, $lightNodes,
 $lightNodeEffect, $holeSizeRange, $minHoleOffsetFromWeb,
 $holeDistanceFromBeam, $ch);
 // HYDRO

131

 if($makeHydro) createHydro();

 parent $panel[0] $slabGrp;

 // BEAMS
 if($makeBeams)
 {
 $beams = createBeams($beam1[2], $beam2[2], (($j)*$slabInc)-1,
(($j+1)*$slabInc)-1, $ch);
 parent $beams[0] $beamGrp1;
 parent $beams[1] $beamGrp2;
 }
 }

 if($makeBeams) parent $beamGrp1 $beamGrp2 $slabGrp $groupName;
 else parent $slabGrp $groupName;

 select -cl;
 }
}

proc string[] createSlab(string $surf, fl oat $isoA, fl oat $isoB, fl oat $thickness, int $ch)
{
 // Face
 nurbsToPolygonsPref -f 0 -pt 1 -pc 1;
 string $result[] = `loft -ch 0 -u 1 -c 0 -ar 1 -d 1 -ss 1 -rn 0 -po 1 -rsn true
 ($surf + “.v[“+ $isoA +”]”) ($surf + “.v[“+ $isoB +”]”)`;

 // Thicken
 polyExtrudeFacet -ch $ch -kft 0
 -tx 0 -ty 0 -tz 0 -rx 0 -ry 0 -rz 0 -sx 1 -sy 1 -sz 1
 -ran 0 -divisions 1 -twist 0 -taper 1 -off 0
 -ltz $thickness -ws 0 -ltx 0 -lty 0 -lrx 0 -lry 0 -lrz 0 -lsx 1 -lsy 1 -lsz 1
 -ldx 1 -ldy 0 -ldz 0 -w 0 -gx 0 -gy -1 -gz 0 -att 0 -mx 0 -my 0 -mz 0
 ($result[0] + “.f[0]”);

 return $result;
}

132

proc createWebs(string $surf, fl oat $offset, fl oat $depth, fl oat $gap, int $ch)
{
 // Split faces and extrude webs
 polySplit -ch $ch -s 1 -ep 1 0.5 -ep 3 0.5 $surf;
 polySplit -ch $ch -s 1 -ep 12 0.6 -ep 3 0.4 $surf;
 polySplit -ch $ch -s 1 -ep 1 0.4 -ep 13 0.6 $surf;
 polySplit -ch $ch -s 1 -ep 15 $offset -ep 3 (1-$offset) $surf;
 polySplit -ch $ch -s 1 -ep 1 (1-$offset) -ep 19 $offset $surf;

 polyExtrudeFacet -ch $ch -kft 0
 -tx 0 -ty 0 -tz 0 -rx 0 -ry 0 -rz 0 -sx 1 -sy 1 -sz 1
 -ran 0 -divisions 1 -twist 0 -taper 1 -off 0 -ws 0
 -ltz $depth -ltx 0 -lty 0 -lrx 0 -lry 0 -lrz 0 -lsx 1 -lsy 1 -lsz 1 -ldx 1 -ldy 0 -ldz 0
 -w 0 -gx 0 -gy -1 -gz 0 -att 0 -mx 0 -my 0 -mz 0
 ($surf + “.f[8:9]”);

 // Tuck in edges of slab and cleanup
 move -r 0 0 (-1*$gap/2) ($surf + “.vtx[0:1]”) ($surf + “.vtx[4:5]”);
 move -r 0 0 ($gap/2) ($surf + “.vtx[2:3]”) ($surf + “.vtx[6:7]”);
 delete ($surf + “.e[14]”);
}

proc string[] createHoles(string $panel[], string $surf, int $j, fl oat $slabInc, string $nodes[],
 fl oat $effect, fl oat $range, fl oat $offWeb, fl oat $offBeam, int $ch)
{
 fl oat $distToNode = getDistToNearestLightNode($panel[0], $nodes);
 if($distToNode < $effect)
 {
 fl oat $holeFactor = ($range * $distToNode/$effect) + $offWeb;

 $holeKnife = `loft -ch $ch -u 1 -c 0 -ar 1 -d 1 -ss 1 -rn 0 -po 1 -rsn true
 ($surf + “.v[“+ (($j*$slabInc)+($slabInc*$holeFactor)) +”]”)
 ($surf + “.v[“+ ((($j+1)*$slabInc)-($slabInc*$holeFactor)) +”]”)`;

 move -r -os -wd ($offBeam) 0 0
 ($holeKnife[0] + “.vtx[1:2]”);
 move -r -os -wd (-1*$offBeam) 0 0
 ($holeKnife[0]+”.vtx[0]”) ($holeKnife[0]+”.vtx[3]”);

133

// move -r -os -wd 0.5 .5 0
// ($holeKnife[0] + “.vtx[1:2]”);
// move -r -os -wd 0.5 -0.5 0
// ($holeKnife[0]+”.vtx[0]”) ($holeKnife[0]+”.vtx[3]”);

 move -0.05 -0.05 0 $holeKnife[0];
 polyExtrudeFacet -ch $ch -kft 0
 -tx 0 -ty 0 -tz 0 -rx 0 -ry 0 -rz 0 -sx 1 -sy 1 -sz 1
 -ran 0 -divisions 1 -twist 0 -taper 1 -off 0
 -ltz (10+0.1) -ltx 0 -lty 0 -lrx 0 -lry 0 -lrz 0
 -lsx 1 -lsy 1 -lsz 1 -ldx 1 -ldy 0 -ldz 0
 -w 0 -ws 0 -gx 0 -gy -1 -gz 0 -att 0 -mx 0 -my 0 -mz 0
 ($holeKnife[0] + “.f[0]”);
 $panel = `polyBoolOp -op 2 -ch $ch $panel[0] $holeKnife`;
 }

 return $panel;
}

proc string[] createBeams(string $bA, string $bB, fl oat $isoA, fl oat $isoB, int $ch)
{
 // Loft shape
 string $sectA[] = `loft -ch $ch -u 1 -c 0 -ar 1 -d 3 -ss 1 -rn 0 -po 1 -rsn true
 ($bA + “.v[“+ $isoA +”]”) ($bA + “.v[“+ $isoB +”]”)`;
 polyCloseBorder -ch $ch $sectA[0];
 string $sectB[] = `loft -ch $ch -u 1 -c 0 -ar 1 -d 3 -ss 1 -rn 0 -po 1 -rsn true
 ($bB + “.v[“+ $isoA +”]”) ($bB + “.v[“+ $isoB +”]”)`;
 polyCloseBorder -ch $ch $sectB[0];

 string $beams[] = {$sectA[0], $sectB[0]};
 return $beams;
}

proc createHydro()
{
//fi rst time:
//create circle

//second time

134

//duplicate fi rst circle
// move duplicate to position
// loft from c1 to c2
// delete both circles

// new curve = dup isoparm[1]
// move curve to position
// loft isoparm[1] to curve
// delete curve
//attachSurface -ch 1 -rpo 1 -kmk 1 -m 1 -bb 0.5 -bki 0 -p 0.1 “loftedSurface13attachedSurface1”
“loftedSurface14” ;
//rebuildSurface -ch 1 -rpo 1 -rt 0 -end 1 -kr 0 -kcp 1 -kc 0 -su 0 -du 0 -sv 0 -dv 0 -tol 0.00393701
-fr 0 -dir 2 “loftedSurface13attachedSurface1attachedSurface1”;

// if in proximity of supply node
// create supply line
}

proc fl oat getDistToNearestLightNode(string $obj, string $nodes[])
{
 fl oat $n, $min = 100000000;
 int $i;
 for($i=0; $i<size($nodes); $i++)
 {
 fl oat $dist = measureDistance(`objectCenter $nodes[$i]`, `objectCenter $obj`);
 if($dist < $min)
 $min = $dist;
 }
 return $min;
}

proc fl oat measureDistance(fl oat $A[], fl oat $B[])
{
 return sqrt (($B[0]-$A[0])*($B[0]-$A[0]) + ($B[1]-$A[1])*($B[1]-$A[1]) + ($B[2]-$A[2])*($B[2]-
$A[2]));
}

proc string[] reduceToObjectsOfType(string $objects[], string $type)
{

135

 string $list[];
 int $i;
 for($i=0; $i<size($objects); $i++)
 if(`objectType $objects[$i]` == $type)
 $list[size($list)] = $objects[$i];
 return $list;
}

panelizeSurface();

136

B|03. snapshots()

proc makeSnapshots()
{
 cycleCheck -e off;

 string $baseUnit = “pCube”;
 int $startNumber = 1;
 int $snapshotCount = 20;

 string $selectedCurves[] = `selectedNodes`;
 string $command;

 int $i;
 for($i=0; $i<size($selectedCurves); $i++)
 {
 duplicate -n ($baseUnit + ($startNumber + $i)) ($baseUnit + “0”);

 pathAnimation -fractionMode true -follow true -followAxis z -upAxis y
 -worldUpType “vector” -worldUpVector 0 1 0 -inverseUp false
 -inverseFront false -bank true -bankScale 100 -bankThreshold 90
 -startTimeU 1 -endTimeU $snapshotCount (“pCube” + ($i+$startNumber))
$selectedCurves[$i];

 snapshot -increment 1 -constructionHistory 1
 -startTime 0 -endTime 80 -update animCurve;
 }

 group -n “baseUnits” -em;
 group -n “snapshots” -em;
 for($i=1; $i<=size($selectedCurves); $i++)
 {
 parent ($baseUnit + $i) “baseUnits”;
 parent (“snapshot” + $i + “Group”) “snapshots”;
 }

 select -cl;
}

